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preface

Picture a world where technology evolves faster than a caffeinated cheetah runs, and the 
demand for efficient, concurrent programming reaches new heights. In this world, soft-
ware engineers face a formidable challenge: building systems that can handle colossal 
amounts of data and provide high processing speeds while satisfying the insatiable 
demands of users. It’s a place where concurrency is both a fascination and a puzzle to be 
solved. This is the world we live in now.

I was once caught in this fascinating web. Then I stumbled across the terms concur-
rency and asynchrony. What I discovered was a hidden treasure: a rich source of untapped 
power that, when harnessed, can transform ordinary programs into extraordinary dis-
plays of computational strength. However, this treasure was wrapped in complexity, and 
the various pieces of the puzzle—concurrency, parallelism, threads, processes, multitask-
ing, and coroutines—were scattered throughout the technological landscape. I yearned 
for a guide, a mentor, someone to put it all together and reveal the full picture. Unable to 
find a resource that bridged the gap between theory and practice across different pro-
gramming languages, I decided to take matters into my own hands. And thus, Grokking 
Concurrency was born—a companion that will accompany you, whispering secrets and 
illuminating the path through this intricate maze.

This is not your ordinary technical tome. No, it’s a book that will captivate and involve you, 
interweaving tales and cultural references into its pages. This book has evolved from a theo-
retical guide to a journey packed with stories, cultural references (count them all!), and hilar-
ious illustrations. It’s a book that doesn’t shy away from humor—and a deep love for dumplings 
and pizza—because why should learning concurrency be a dull and dreary experience?

Together, we will conquer the complexities of concurrency and decipher the mystery 
of asynchrony. From the basics of concurrency to the fascinating world of async and 
await, we’ll use Python as our trusty companion and the language of choice. Don’t 
worry if Python isn’t your primary language—the concepts and techniques we’ll cover go 
beyond specific implementations.
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“But why Python?” you may wonder. Well, dear reader, it strikes the perfect balance 
between simplicity and expressiveness, allowing us to focus on the essence of concurrency 
without unnecessary distractions. Besides, I simply enjoy it, and I won’t hide that fact.

Whether you’re an experienced developer seeking to deepen your understanding of con-
current systems or a curious newcomer eager to grasp the intricacies of concurrency, this 
book has something for you. Together, we’ll uncover the secrets of concurrency, empowering 
you to build scalable, efficient, and resilient software systems that can conquer any 
challenge.

Prepare to embark on a journey like no other, where the boundaries of time and space blur 
and programs dance to the beat of their own octopus-like rhythm. Yes, you heard it right—
octopuses. Those delightful creatures of the deep, with their eight tentacles swirling in perfect 
harmony, symbolize the intricate and mesmerizing nature of concurrent systems we are about 
to explore together. Let the adventure begin!
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about this book

This book aims to demystify concurrency, asynchrony, and parallel programming, pro-
viding fundamental insights and practical understanding. Unlike academic research 
papers or language-specific books, it focuses on explaining underlying ideas and princi-
ples rather than specific implementations. The book is written in a high-level, accessible 
manner, utilizing visual diagrams instead of complex mathematical explanations to foster 
a solid understanding. The knowledge you gain from this book will give you the context 
to comprehend concurrent frameworks and architect scalable solutions in your area of 
interest. The book fills a gap in available resources by providing a comprehensive and 
understandable guide for those seeking to grasp the concepts of concurrency and asyn-
chrony, serving as a shortcut for developers who would otherwise need years of experi-
ence to acquire this knowledge independently.

Who should read this book?
Grokking Concurrency is perfect for everyone eager to learn the fundamentals of concur-
rency. To get the most benefit from this book, you should have a basic comfort level in 
working with computer systems, an understanding of programming language concepts 
and data structures, and experience with sequential programs. No prior knowledge of the 
OS is necessary, as all the essential information is provided in the book. While network-
ing concepts are discussed, they aren’t covered in great detail, so some basic understand-
ing of networking fundamentals is assumed. You don’t need deep knowledge on any of 
these topics, and if required, you can research them as you go.
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How this book is organized: A roadmap
This book is divided into three parts. Part 1, “The octopus orchestra: Introduction to a sym-
phony of concurrency,” discusses the fundamental concepts and primitives of writing concur-
rent programs. Using a layered approach, Chapters 1 through 5 lay down the fundamental 
knowledge of concurrency from the hardware level to the application level. 

Part 2, “The many tentacles of concurrency: Multitasking, decomposition, and synchro-
nization,” discusses the advantages of using abstractions and popular patterns to improve 
your code’s performance, scalability, and resilience. In Chapters 6 through 9, you learn how 
to avoid some of the most frequent problems that arise when building concurrent systems. 

Part 3, “Asynchronous octopuses: A pizza-making tale of concurrency,” extends your con-
currency knowledge beyond a single machine and scales it up to multiple machines con-
nected via a network. In this context, events can occur asynchronously, meaning that one 
event may happen at a different time than another event. This concept of asynchrony will be 
a focus of Chapters 10 through 12, presenting another dimension of the topic. Asynchrony is 
used to present the impression of concurrent or parallel tasking, and in modern implementa-
tions, you can combine asynchronous and truly concurrent operations, giving the system a 
greater performance gain. Chapter 13 wraps up the book with a final set of concurrency prob-
lems that we solve step by step to make sure you’ve grokked concurrency.

About the code 
You can get executable snippets of code from the liveBook (online) version of this book 
at https://livebook.manning.com/book/grokking-concurrency. The complete source 
code for the examples in the book is available for download from the Manning website at 
www.manning.com, and from GitHub at https://github.com/luminousmen/grokking_
concurrency. The source code is intended to be a reference for how the programs could 
be implemented. These examples are optimized for learning and are not for production 
use. The code was written to serve as a tool for teaching. Using established libraries and 
frameworks is recommended for projects that will make their way into production, as 
they are usually optimized for performance, well tested, and well supported.

https://livebook.manning.com/book/grokking-concurrency
https://github.com/luminousmen/grokking_concurrency
https://github.com/luminousmen/grokking_concurrency
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platform. Using liveBook’s exclusive discussion features, you can attach comments to the 
book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask 
and answer technical questions, and receive help from the author and other users. To access 
the forum, go to https://livebook.manning.com/book/grokking-concurrency/discussion. You 
can also learn more about Manning’s forums and the rules of conduct at https://livebook 
.manning.com/discussion. 
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between individual readers and between readers and the author can take place. It is not a 
commitment to any specific amount of participation on the part of the author, whose contri-
bution to the forum remains voluntary (and unpaid). We suggest you try asking him some 
challenging questions lest his interest stray! The forum and the archives of previous discus-
sions will be accessible from the publisher’s website for as long as the book is in print.
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Sitting in a coffee shop and enjoying your coffee, you find your attention 
caught by a nearby group of programmers in a passionate discussion of con-
currency. They’re throwing around terms like parallel computing, threads, 
and interprocess communication with ease, leaving you feeling a bit lost. But 
don’t worry; you’re not alone.

If you’ve ever been to an orchestra concert, you know the beauty of mul-
tiple musicians playing different instruments and melodies all at once. It’s a 
beautiful chaos that somehow comes together to create an incredible per-
formance. This chaos is much like concurrency: the idea of having multiple 
processes or threads running simultaneously to achieve a common goal.

In Chapters 1 through 5, you learn the fundamentals of concurrency, 
how computers work, and the different types of concurrency primitives. We 
explore sequential and parallel computing, delve into the hardware and 
software components that enable concurrency, and examine the various 
types of interprocess communication that allow multiple processes to work 
together seamlessly.

So, grab a latte and join the conversation—I promise it’ll be worth it.

Part 1  
The octopus orchestra: 

Introduction to a symphony  
of concurrency
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Look out the window, and take a moment to observe the world around you. 
Do you see things moving in a linear, sequential fashion? Or do you see a 
complex web of interacting, independently behaving pieces all moving at 
the same time?

Although people tend to think sequentially—like going 
through to-do lists and doing things one step at a time—
the reality is that the world is much more complex 
than that. It is not sequential but rather con-
current. Interrelated events happen simulta-
neously. From the chaotic rush of a busy 
supermarket to the coordinated moves of a 
football team to the ever-changing flow of traffic on the 
road, concurrency is all around us. Just as in the natural 

In this chapter

• You learn why concurrency is an important topic 

worth studying

• You learn how to measure the performance of the 

systems

• You learn that there are different layers of concurrency

1Introducing 
concurrency
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world, your computer needs to be concurrent to be suited for modeling, simulating, and 
understanding complex real-world phenomena. 

Concurrency in computing allows a system to deal with more than one task at a time. 
This could be a program, a computer, or a network of computers. Without concurrent 
computing, our applications would not be able to keep up with the complexity of the 
world around us.

As we delve deeper into the topic of concurrency, several questions may arise. First, if 
you’re still not convinced—why should you care about concurrency?

Why is concurrency important?
Concurrency is essential in software engineering. The demand for high-performance 
applications and concurrent systems makes concurrent programming a crucial skill for 
software engineers.

Concurrent programming is not a new concept, but it has gained significant attention 
in recent years. With the increasing number of cores and processors in modern com-
puter systems, concurrent programming has become a necessary skill for writing soft-
ware. Companies are looking for developers who are proficient in concurrency, as it is 
often the only way to solve problems where computing resources are limited and fast 
performance is required.

The most important advantage of concurrency—and, historically, the first reason to 
start exploring this area—is the ability to increase system performance. Let’s look at how 
that happened.

Increasing system performance

When we need to improve performance, why can’t we just buy faster computers? Well, 
that was what people did a few decades ago, but we found out that, eventually, buying 
faster computers is no longer feasible.

Moore’s law

In 1965, Gordon Moore, one of the founders of Intel, discovered a pattern. New processor 
models appeared about two years after their predecessors, and the number of transistors 
they contained roughly doubled each time. Moore concluded that the number of 
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transistors, and consequently the processor’s clock speed, would double every 24 months. 
This observation became known as Moore’s law. For software engineers, that meant they 
had to wait only two years for an application to double in speed. 

The problem was that around 2002, the rules changed. As the famous C++ expert Herb Sutter 
put it, “the free lunch was over.”1 We discovered a fundamental relationship between the physi-
cal size of the processor and the processing 
speed (processor’s frequency). The time 
required to execute an operation depends 
on the circuit length and the speed of light. 
Simply put, we can add only so many tran-
sistors (the fundamental building block of 
computer circuitry) before we run out of 
space. Rising temperatures also play a 
major role. Further performance improve-
ments could not depend on merely increas-
ing the processor’s frequency. Thus began 
what’s become known as the multicore 
crisis.

The progress of individual proces-
sors in terms of clock speed stopped due 
to physical limitations, but the need to increase the performance of systems did not. 
Manufacturers’ focus shifted to horizontal expansion in the form of multiprocessors, 
forcing software engineers, architects, and language developers to adapt to architectures 
with multiple processing resources.

The most important conclusion from this history tour is that by far the most relevant 
advantage of concurrency, and historically the first reason to start exploring this area, is 
to increase system performance in a way that makes efficient use of additional process-
ing resources. This leads us to two important questions: how do we measure perfor-
mance, and how can we improve it?

1 Herb Sutter, “The free lunch is over,” blog post, http://www.gotw.ca/publications/
concurrency-ddj.htm.
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Latency vs. throughput

In computing, performance can be quantified a number of ways, depending on how we 
look at the computer system. One way to increase the amount of work done is to reduce 
the time it takes to perform individual tasks.

Let’s say you use a motorcycle to travel between home and work, and it takes an hour 
for a one-way trip. You care about how fast you can get to work, so you measure system 
performance by this metric. If you drive faster, you get to work sooner. From a comput-
ing system perspective, this scenario is called latency. Latency is a measure of how long a 
single task takes from start to finish.

Now imagine you work for a transportation department, and your job is to increase the 
performance of the bus system. You aren’t just concerned about getting one person to the 
office faster; you want to increase the number of people who can get from home to work 
per unit of time. This scenario is called throughput: the number of tasks a system can 
handle over a period of time.

It is very important to understand the difference between latency and throughput. 
Even if a motorcycle goes twice as fast as a bus, the bus has 25× greater throughput (the 
motorcycle transports 1 person a given distance in an hour, while the bus transports 50 
people the same distance in 2 hours: averaged for time, that gives us 25 people per hour!). 
In other words, higher system throughput does not necessarily mean lower latency. 
When optimizing performance, an improvement in one factor (such as throughput) may 
lead to the worsening of another factor (such as latency).
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Concurrency can help decrease latency. For example, a long-running task can be broken 
down into smaller tasks executed in parallel, thus reducing the overall execution time. 
Concurrency can also help increase throughput by allowing multiple tasks to be pro-
cessed simultaneously.

In addition, concurrency can hide latency. When we are waiting for a call, waiting for 
the subway to take us to work, and so forth, we can just wait, or we can use our process-
ing resources to do something else. For example, we can read our emails while catching 
a ride on the subway. This way, we’re essentially doing multiple tasks at once and hiding 
the delay by making productive use of the waiting time. Hiding latency is key to respon-
sive systems and is applicable to problems that involve waiting.

Therefore, using concurrency can improve system performance in three main ways: 

• It can reduce latency (that is, make a unit of work faster).
• It can hide latency (that is, allow the system to accomplish something else during 

an operation with high latency).
• It can increase throughput (that is, make the system able to do more work).

Now that we’ve seen how concurrency is applied to system performance, let’s look at 
another application of concurrency. Early in this chapter, we considered how concur-
rency is necessary if we want to model the complex world around us. Now we can get 
more specific about how concurrency can solve large or complex problems 
computationally.
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Solving complex and large problems
Many problems that software engineers need to solve when developing systems that deal 
with the real world are so complex that it is impractical to solve them using a sequential 
system. Complexity can come from the size of the problem or how hard it is to under-
stand a given piece of the systems we develop. 

Scalability

A problem’s size involves scalability or the characteristic of a system that can increase 
performance by adding more resources. Ways to increase the scalability of systems can 
be divided into two types: vertical and horizontal.

Vertical scaling (scaling up) increases system performance by increasing the amount of 
memory to upgrade existing processing resources or replacing a processor with a more 
powerful one. In this case, scalability is limited since it is very difficult to increase the 
speed of individual processors, making it easy to hit the performance ceiling. Upgrading 
to more powerful processing resources is also expensive (i.e., buying a supercomputer), 
as we have to pay higher prices for smaller and smaller gains for top-tier cloud instances 
or hardware. 

Decreasing the processing time associated with a particular work unit will get us so 
far, but ultimately, we need to scale out our systems. Horizontal scaling (scaling out) 
involves increasing program or system performance by distributing the load between 
existing and new processing resources. As long as it is possible to increase the number of 
processing resources, we can increase system performance. In this case, scalability prob-
lems won’t arise as quickly as in the case of vertical scaling.

The industry decided to migrate toward a horizontally scalable approach. This trend is 
driven by demand for real-time systems, high volumes of data, reliability through redun-
dancy, and improved utilization through resource sharing due to migration to cloud/
SaaS environments. 
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Horizontal scaling requires system concurrency, and one computer may not be 
enough. Multiple interconnected machines, called computing clusters, solve data pro-
cessing tasks in a reasonable time.

Decoupling

Another aspect of large problems is complexity. Unfortunately, the complexity of sys-
tems does not decrease over time without some effort on the part of the engineers. 
Businesses want to make their products more powerful and functional. This inevitably 
increases the complexity of the code base, infrastructure, and maintenance efforts. 
Engineers have to find and implement different architectural approaches to simplify the 
systems and divide them into simpler independent communicating units.

Separation of duties is almost always welcome in software engineering. A basic engi-
neering principle called divide and conquer creates loosely coupled systems. Grouping 
related code (tightly coupled components) and separating unrelated code (loosely coupled 
components) makes applications easier to understand and test and reduces the number 
of bugs—at least, in theory.

Another way of looking at concurrency is that it is a decoupling strategy. Dividing func-
tionality between modules or units of concurrency helps individual pieces focus on spe-
cific functionality, makes them maintainable, and reduces overall system complexity. 
Software engineers decouple what gets done from when it gets done. That dramatically 
improves the performance, scalability, reliability, and internal structure of an 
application.

Concurrency is important and widely used in modern computing systems, operating 
systems (OSs), and large distributed clusters. It helps model the real world, maximizes 
the efficiency of systems from users’ and developers’ perspectives, and allows developers 
to solve large, complex problems.

As we explore the world of concurrency, the journey will change the way you think 
about computer systems and their capabilities. This book will reveal the lay of the land 
as you learn about the different layers of concurrency.
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Layers of concurrency
Like most complex design problems, concurrency is built using multiple layers. In a lay-
ered architecture, it is important to understand that contradictory or seemingly mutu-
ally exclusive concepts can coexist at different levels concurrently. For example, it’s 
possible to have concurrent execution on a sequential machine.

I like to think of concurrency’s layered architecture as a symphony orchestra that 
plays, say, Tchaikovsky:

• At the top, we have the conceptual or design layer (the application layer). We can 
think of this as the composer’s composition within the orchestra; within a 
computer system, like musical notation, algorithms tell the components of the 
system what should be done.

• Next, we have multitasking at runtime (the runtime system layer). This is like the 
musicians all playing different portions of the composition, using different 
instruments cooperatively. The music flow moves from one group to another, 
following the conductor’s instructions. Within a computer system, various 
processes do their part to achieve an overall purpose.
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• Finally, we have low-level execution (the hardware layer). Here, we zoom in on a 
specific instrument: the violin. Each note produced by a violinist results from 
one to four strings oscillating at a specific frequency determined by the length, 
diameter, tension, and density of the wire. Within a computer system, a single 
process performs tasks as dictated by instructions specific to that process.

Each layer describes the same process at different levels, but the details are different and 
sometimes contradictory.

The same happens in concurrency:

• At the hardware layer, we directly encounter machine instructions executed by 
the processing resources using signals to access hardware peripherals. Modern 
architectures continue to increase in complexity. Because of this, optimizing 
application performance on these architectures now requires a deep 
understanding of the application’s interactions with the hardware components. 

• Moving to the runtime system layer, many of the shortcomings associated with 
programming abstractions are hidden behind mysterious system calls, device 
drivers, and scheduling algorithms that significantly affect concurrent systems 
and therefore require a thorough understanding. This layer is frequently 
represented by the operating system, as described in some detail in Chapter 3.

• Finally, at the application layer, abstractions that are closer in spirit to how the 
physical world operates become available. Software engineers write source code 
that can implement complex algorithms and represent business logic. This code 
can also modify the execution flow using programming language features and 
generally represent very abstract concepts that only a software engineer can 
think of. 



12 Chapter 1  I  Introducing concurrency

We use these layers extensively as a travel guide while moving up the ladder of knowl-
edge about concurrency.

What you’ll learn from this book
Concurrency has earned a reputation as a hard field. Some of its complexity lies in the 
lack of written wisdom from experienced practitioners. Oral tradition instead of formal 
writing has left this area shrouded in mystery. I wrote this book in an effort to make this 
area less mysterious.
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This book won’t teach you everything you will ever need to know about concurrency. It 
will get you started and help you understand what you need to learn more about. We will 
explore the problems involved in concurrent programming and gain insight into the best 
practices needed to create concurrent and scalable applications.

Beginner and intermediate programmers will get a basic understanding of how to 
write concurrent systems. To get the most out of the book, you should have some pro-
gramming experience, but you don’t need to be an expert. Concrete examples explain 
the key concepts in general terms, and then we demonstrate them in action using the 
Python programming language.

This book is organized into three parts covering different levels of concurrency. The 
first part discusses fundamental concepts and primitives of writing concurrent pro-
grams, covering knowledge from the hardware layer to the application layer.

The second part focuses on designing concurrent applications and popular concur-
rent patterns. It also covers how to avoid common concurrency problems that arise when 
building concurrent systems. 

The third part of the book expands our knowledge of concurrency beyond a single 
machine and delves into scaling applications to multiple machines connected via a net-
work. We explore asynchronous communication between tasks, which is crucial in this 
context. Additionally, we provide a step-by-step guide for how to write a concurrent 
application.
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By the end of the book, you will be up to speed on con-
currency and modern asynchronous and concurrent pro-
gramming approaches. We move from low-level hardware 
operations to a higher level of application design and 
translate theory into practical implementation.

All the code in the book is written in the Python 3.9 
programming language and tested on macOS and Linux 
OSs. The narrative is not tied to any specific program-
ming language but references the Linux kernel subsys-
tem. All the source code for the examples can be found 
in the GitHub repository (https://github.com/
luminousmen/grokking_concurrency) and on the  
book’s website (www.manning.com/books/
grokking-concurrency).

Recap
• A concurrent system is a system that can deal with many things at once. 
• In the real world, many things happen concurrently at any given time. If we want 

to model the real world, we need concurrent programming.
• Concurrency drastically enhances the throughput and performance of a system 

by reducing or hiding latency and utilizing the existing resources more 
efficiently.

• The concepts of scalability and decoupling are used throughout the book: 
 – Scalability can be vertical or horizontal. Vertical scaling increases program 

and system performance by upgrading existing processing. Horizontal scaling 
increases performance by distributing the load between existing and new 
processing resources. The industry migrated toward a horizontally scalable 
approach to scaling architecture, for which concurrency is a prerequisite.

 – Complex problems can be decoupled into simple components that are linked 
together. In a way, concurrency is a decoupling strategy that can help us solve 
large and complex problems.

• A journey to an unfamiliar place usually requires a map if we want to find our 
way without getting lost. In this book, we navigate using layers of concurrency: 
the application layer, runtime system layer, and hardware layer.
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For thousands of years (well, not quite, but for a long time), developers have 
been writing programs using the simplest model of computation: the 
sequential model. The serial execution approach is at the core of sequential 
programming, and this is our starting point in our introduction to concur-
rency. In this chapter, I introduce different execution approaches that lie at 
the low-level execution layer.

In this chapter

• You learn the terminology to talk about a running 

program

• You learn different approaches at the lowest layer of 

concurrency: physical task execution 

• You draft your first parallel program

• You learn the limitations of the parallel computing 

approach

2Serial and  
parallel execution
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Review: What is a program?
The first problem with concurrency, and computer science in general, is that we’re 
extremely bad at naming things. We sometimes use the same word to describe several 
distinct concepts, different words to describe the same thing, or even different words to 
describe different things where the meaning depends on context. And sometimes, we 
just make up words.

NOTE Did you know that CAPTCHA is a contrived acronym for “Completely 
Automated Public Turing test to tell Computers and Humans Apart”?

So, before we start looking at execution, it will be helpful to understand what is being 
executed and to establish the general terminology we use in this book. Generally speak-
ing, a program is a sequence of instructions that a computer system performs or 
executes.

A program must be written before it can be executed. This is done by writing source 
code using one of many programming languages. The source code can be thought of as 
a recipe in a cookbook—a set of steps that helps the cook make a meal from raw ingredi-
ents. There are many components to cooking: the recipe itself, the cook, and the raw 
ingredients.

Executing a program is similar to executing a recipe. We have the source code of the 
program (the recipe), the chef (the processor, aka CPU), and the raw ingredients (the 
input data of the program).

The processor cannot solve a single meaningful task on its own. It can’t sort things or 
search for objects with specific characteristics; a processor can only do a limited number 
of simple tasks. All its “intellectual” power is determined by the programs it executes. No 
matter how much processing power you have, you can’t accomplish anything unless that 
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power is given direction. Turning a task into a set of steps that can be executed on a pro-
cessor is what a developer does, not unlike the writer of a cookbook. 

Developers normally describe the task they want to accomplish using a programming 
language. However, the CPU cannot understand source code written in a normal pro-
gramming language. First, the source code has to be translated into machine code, which 
is the language the CPU speaks. This translation is done by special programs called 
compilers. A compiler creates a file, often called an executable, with machine-level 
instructions that the CPU can understand and execute.

The CPU can take a few different approaches when it executes the machine code. The 
most fundamental approach for handling multiple instructions is serial execution, which 
is at the heart of sequential computing. We look at this next.

Serial execution
As stated earlier, a program is a list of instructions, and generally, the order of that list 
matters. Back to our recipe example: suppose you started cooking your favorite recipe 
and followed all the steps the recipe told you, but in the wrong order. For example, maybe 
you cooked the egg before you mixed it into the flour. You probably would not be happy 
with the outcome. For many tasks, the order of the steps matters a lot.



18 Chapter 2  I  Serial and parallel execution

The same is true with programming. When we solve a programming problem, we 
first divide the problem into a series of small tasks and execute these small tasks one after 
another, or serially. Task-based programming allows us to talk about computations in a 
machine-independent manner and provides a framework for constructing programs 
modularly. 

A task can be thought of as a piece of work. If we are talking about CPU execution, we 
can call that task an instruction. A task can also be a sequence of operations forming an 
abstraction of a real-world model, such as writing data to a file, rotating an image, or 
printing a message on a screen. A task can contain a single operation or many (which we 
talk more about in the following chapters), but it is a logically independent chunk of 
work. We use the term task as a general abstraction for the unit of execution.

The serial execution of tasks is a sort of chain, where the first task is followed by the sec-
ond one, the second is followed by the third, and so on, without overlapping time peri-
ods. Imagine that today is laundry day, and you have a pile of laundry to wash. 
Unfortunately, as in many homes, you have only one washing machine, and you regret-
fully remember how you once washed your favorite white T-shirt with a colored shirt. Tragic! 
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Chastened by that mistake, you start by washing white laundry in the washing machine, 
followed by washing dark laundry, then sheets, and finally, towels. The minimum time 
in which anybody can do laundry is determined by the speed of the washing machine 
and the amount of laundry. Even if we have a ton of laundry to wash, we still have to do 
it serially, one pile after another. Each execution blocks the entire processing resource; 
the washing machine can’t wash half of the white clothes and then begin washing dark 
clothes. That’s not the behavior you expect from it.

Sequential computations
On the other hand, to describe dynamic, time-related phenomena, we use the term 
sequential. This is a conceptual property of a program or a system. It’s more about how 
the program or system has been designed and written in the source code, not actual 
execution.

Imagine that you need to implement a Tic-Tac-Toe 
game. The rules of the game are simple enough: there are 
two players, and one of the players chooses O and the 
other X to mark their respective cells. Players take turns 
putting their X or O on the board, one after another. If a 
player gets three marks on the board in a row, a column, or 
one of the two diagonals, that player wins. If the board is 
full and no player wins, the game ends in a draw.

Can you write such a game?
Let’s discuss the game logic. Players take turns by typ-

ing the row number and column number in which they 
want to make a move. After a player makes a move, the 

program checks if this player has won or if there is a tie and then switches to the other 
player’s turn. The game proceeds this way until a player wins or there is a draw. If a player 
wins, the program displays a message saying which player won, and then the user presses 
any button to exit the program. 

The next illustration shows what a diagram of the game Tic-Tac-Toe might look like.
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The program has serial steps to solve the problem. Each step relies on the result from the 
previous step. Hence, each step is blocking the execution of the subsequent steps. We can 
only implement such a program using a sequential programming approach.

As you can see, the computational model of the program here is determined by the 
rules of the game—the algorithm. There is a clear dependency between the tasks that 
cannot be broken down in any way. We can’t check a move that wasn’t made yet by the 
player, and we can’t give the first player two moves in a row since that would be 
cheating.

NOTE In fact, there are not many tasks where the next step depends on the 
completion of the previous steps. Hence it is comparatively easy to exploit 
concurrency in most programming problems that developers face every day. 
We talk about that in the subsequent chapters.

What tasks can you think of where serial execution is required? Hint: That means no 
step can execute until the previous step has completed. 

The opposite of sequential programming is concurrent programming. Concurrency is 
based on the idea that there are independent computations that can be executed in an 
arbitrary order with the same outcome.
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Pros and cons of sequential computing

Sequential computation has several important advantages but also comes with pitfalls.

Simplicity (pro)

Any program can be written in this paradigm. It’s a clear and predictable concept, so it’s 
the most common. When we think of tasks, it is natural to consider a sequence. Cook 
first, then eat, and then wash the dishes is a reasonable sequence of tasks. Eating first, 
then washing the dishes, and then cooking makes less sense.

Sequential computing is a straightforward approach with a clear set of step-by-step 
instructions about what to do and when to do it. The execution guarantees that there is 
no need to check whether a dependent step has completed or not—the next operation 
will not start executing until the previous one finishes its execution.

Scalability (con)

Scalability is the ability of a system to handle an increasing amount of work, or the 
potential to increase the system’s ability to handle work, to accommodate growth. A 
system is considered scalable if performance improves after adding more processing 
resources. In the case of sequential computing, the only way to scale the system is to 
increase the performance of system resources used—CPU, memory, and so on. That is 
vertical scaling, which is limited by the performance of CPUs available on the market.

Overhead (con)

In sequential computing, no communication or synchronization is required between 
different steps of the program execution. But there is an indirect overhead of underuti-
lizing available processing resources: even if we are happy with the sequential approach 
inside the program, we may not use all available resources of the system, leading to 
decreased efficiency and unnecessary costs. Even if the system has a single one-core pro-
cessor, it can still be underutilized. We go deeper into why in Chapter 6.

Parallel execution
If you’re familiar with gardening, you may be aware that growing a tomato plant typi-
cally takes around four months. With this in mind, consider the following question: is it 
true or false that you can only grow three tomatoes in a year?

Clearly, the answer is false, because you can grow more than one tomato at a time.
As we’ve seen, in serial execution, only one instruction is performed at a time. 

Sequential programming is what most people learn first, and most programs are written 
that way: execution starts at the beginning of the main function and proceeds serially, 
one task/function, call/operation at a time. 
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When we remove the assumption that we can do only one thing at a time, we open up 
the possibility of working in parallel—just like growing more than one tomato plant. 
However, programs that can do things in parallel can be more difficult to write. Let’s 
look at a simple analogy.

How to speed up the process of doing the laundry

Congratulations! You just won the lottery: free tickets to Hawaii. Sweet! But there’s a 
catch—you have only a couple of hours before your plane leaves, and you need to do four 
loads of laundry. Your washing machine, no matter how efficient, cannot wash more 
than one load at a time, and you do not want to mix the laundry.

With programming, as with laundry, the time it takes for a sequential program to run is 
limited by the speed of the processor and how fast it can execute that series of instruc-
tions. But what if you use more than one washing machine? Because each load is inde-
pendent of any other laundry load, you can cope with the task much faster if you have 
multiple machines, right?

So you decide to visit the nearest laundromat. It has a bunch of washing machines, 
and you can easily wash all four of your loads in four separate machines, all at the same 
time. In this case, we can say that all the washing machines are working in parallel—
more than one load is being washed at a time. Thus, you have increased the throughput 
by four times.

Remember the horizontal scaling we talked about in Chapter 1? Here we have applied 
this approach. 



 Parallel execution 23

Parallel execution means task execution is physically simultaneous. Parallel execution is 
the opposite of serial execution. Parallelism can be measured by the number of tasks that 
can be executed in parallel. In this case, you have four washing machines, so the paral-
lelism equals four.

Now that we know what parallel execution is, we need to understand the requirements 
for it to be possible.
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Parallel computing requirements 
Before we go deeper into parallel execution, let’s first consider the requirements to 
achieve it: task independence and hardware support.

Task independence

In sequential computing, all operations are accelerated by increasing the CPU clock 
speed. This is the simplest solution to the latency reduction problem. It does not require 
any special program design. All we need is a more powerful processor. Parallel comput-
ing is mainly used to decrease latency by dividing a problem into tasks that can be exe-
cuted concurrently and independently of each other. 

NOTE Large programs often consist of many smaller ones. For example, a 
web server processes requests from web browsers and responds with HTML 
web pages. Each request is handled like a small program, and it would be ideal 
if such programs could run simultaneously. 

The use of parallel computing is problem specific. To apply parallel computing to a  
problem, it must be possible for the problem to be decomposed into a set of independent 
tasks so that each processing resource can execute part of the algorithm simultaneously 
with the others. Independence here means processing resources can process tasks in 
whatever order they like and wherever they like, as long as the result is the same. 
Noncompliance with this requirement makes the problem non-parallelizable.

The key to understanding whether a program can be executed in parallel is to analyze 
which tasks can be decomposed and which tasks can be executed independently. We talk 
more about how to do decomposition in Chapter 7.

NOTE In this case, the logic goes only in one direction—a program that can 
run in parallel can always be made sequential, but a sequential program 
cannot always be made parallel.

Task independence is not always possible because not every program or algorithm can be 
divided into independent tasks from start to finish. Some tasks can be independent, and 
some cannot if they depend on previously executed tasks. That requires developers to 
synchronize different dependent pieces of a program to get the correct results. 
Synchronization means blocking the execution of the task waiting for dependencies. In 
the Tic-Tac-Toe example, program execution is blocked by the individual players’ moves. 
Coordinating interdependent parallel computations via synchronization can severely 
limit the parallelism of the program, presenting a significant challenge in writing paral-
lel programs compared to simple sequential programs (as discussed in more detail in 
Chapter 8).
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That extra work can be worth the effort. When done right, parallel execution increases 
the overall throughput of a program, enabling us to break down large tasks to accom-
plish them faster or accomplish more tasks in a given time frame.

Tasks that require little or no synchronization are sometimes called embarrassingly 
parallel. They can easily be broken down into independent tasks executed in parallel. 
Such tasks are often found in scientific computing. For example, distributing the work of 
finding prime numbers can be done by allocating subsets to each processing resource. 

NOTE There is no shame in having an embarrassingly parallel task! On the 
contrary, embarrassingly parallel applications are cool because they are easy 
to program. In recent years, the term embarrassingly parallel has taken on a 
slightly different meaning. Algorithms that are embarrassingly parallel tend 
to have little communication between processes, which is the key to good 
performance, so embarrassingly parallel usually refers to an algorithm with 
low communication needs. We touch on this a little more in Chapter 5.

Thus, the extent of parallelism depends more on the problem than on the people trying 
to solve it. 

Hardware support

Parallel computing requires hardware support. Parallel programs need hardware with 
multiple processing resources. Without at least two processing resources, we cannot 
achieve true parallelism. We talk about hardware and how it can support multiple simul-
taneous operations in the next chapter. Having all the requirements for parallel comput-
ing, we are now ready to explore what it actually is.
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Parallel computing
Parallel computing uses decomposition to split large or complex problems into small 
tasks and then utilizes parallel execution of the runtime system to solve them effectively. 
In the next example, let’s demonstrate how parallelism can save the world.

Imagine that you are working at the FBI IT department, and for the next mission, 
you must implement a program to crack a password (number combination of a particu-
lar length) and access a system that can destroy the whole world. 

The usual approach for finding a correct password consists of repeatedly guessing the 
password (known as the brute-force approach), calculating its scrambled form (cryp-
tographic hash), and comparing the resulting cryptographic hash with the one stored on 
the system. Let’s assume that you already have a cryptographic hash of the password.
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How do you implement such a program? 
Brute force is understood as a general method of finding a solution to a problem that 

requires listing all possible combinations, iterating over this list, and checking whether 
each particular solution solves the problem. In this case, you need to go through a list of 
all possible number combinations and check whether each cryptographic hash corre-
sponds to the hash found on the system. 

After a couple of sleepless nights, you figure out how to check the cryptographic hash, 
go through all the possible number combinations, and finish implementing the pro-
gram using your favorite programming language. The algorithm generates a number 
combination and checks the cryptographic hash. If it matches, the found password is 
printed out, and the program finishes; if not, it goes to the next combination and does 
the cycle again. 

Essentially, you process all possible password combinations one by one using sequen-
tial computing. Here, you let your CPU process one task at a time and then get the next 
task and do it serially until all the tasks have been completed. The steps for how to use 
serial execution to solve a problem are shown in the previous figure and this code: 

# Chapter 2/password_cracking_sequential.py

import time

import math

import hashlib

import typing as T

def get_combinations(*, length: int, min_number: int = 0) -> T.List[str]:

    combinations = []

    max_number = int(math.pow(10, length) - 1)

    for i in range(min_number, max_number + 1): 

        str_num = str(i)

        zeros = “0” * (length - len(str_num))

        combinations.append(“”.join((zeros, str_num)))

    return combinations In a given range, generates a list 
of all possible passwords with  
a specified number of digits
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def get_crypto_hash(password: str) -> str:

    return hashlib.sha256(password.encode()).hexdigest()

def check_password(expected_crypto_hash: str,

                   possible_password: str) -> bool:

    actual_crypto_hash = get_crypto_hash(possible_password)

    return expected_crypto_hash == actual_crypto_hash

def crack_password(crypto_hash: str, length: int) -> None:

    print(“Processing number combinations sequentially”)

    start_time = time.perf_counter()

    combinations = get_combinations(length=length) 

    for combination in combinations:

        if check_password(crypto_hash, combination): 

            print(f”PASSWORD CRACKED: {combination}”) 

            break

    process_time = time.perf_counter() - start_time

    print(f”PROCESS TIME: {process_time}”)

if __name__ == “__main__”:

    crypto_hash = \

        “e24df920078c3dd4e7e8d2442f00e5c9ab2a231bb3918d65cc50906e49ecaef4”

    length = 8

    crack_password(crypto_hash, length)

The output will look similar to this:

Processing number combinations sequentially

PASSWORD CRACKED: 87654321

PROCESS TIME: 64.60886170799999

With absolute confidence in your heroism from solving the problem, you give the pro-
gram to the next hero who will go on a mission. Agent 008 nods and finishes drinking a 
vodka martini.

Compares the cryptographic hash of a possible 
password with the one stored in the system

Sequentially generates and tests all possible passwords of a 
specified length and stops as soon as it finds a password that 

produces the expected cryptographic hash
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We all know spies don’t trust anyone, right? In less than an hour, 
Agent 008 bursts into your office and tells you that the program is 
taking too long—according to their calculations, it will 
take an hour to process all the possible password 
combinations on the super device! “I only have a 
couple of minutes before the building will burst 
into flames,” says Agent 008 fearfully, sipping another 
vodka martini. They leave the room with a parting com-
mand: “Speed it up!” Ouch.

How do you speed up a program like this?
The obvious way would be to increase the performance 

of the CPU: by increasing the clock speed of the super 
device, you can process more passwords in the same 
amount of time. Unfortunately, we have already dis-
covered that this approach has limits—there is a 
physical limit on how fast the CPU can be. And, after 
all, it’s the FBI. You already have the fastest processor. 
There is no way you can increase its performance. This is 
the most significant disadvantage of sequential computing. It is not easily scalable, even 
if we have more than one processing resource on the computer system.

Another way to make the program’s execution faster is to break it down into indepen-
dent parts and distribute those tasks among multiple processing resources so they can be 
processed simultaneously. The more processing resources and smaller tasks we have, the 
faster the processing goes. This is the core idea behind parallel computing and some-
thing we look at in more detail in Chapters 8 and 12.

Do you think you can use parallel execution here? The super device uses a top-tier 
CPU with a lot of cores. So, the first condition is fulfilled—you have proper hardware 
that can execute tasks in parallel.

Is it possible to decompose the problem into independent tasks? Checking individual 
password combinations can be thought of as tasks, and they are not dependent on each 
other—you don’t need to check all previous passwords before checking the current one. 
It does not matter which password is processed first, as they can be executed entirely 
independently of each other as long as you find the right one. Great!

So, you have met all the requirements for parallel computing. You have hardware sup-
port and task independence. Let’s design a final solution!

The first step for every such problem is to decompose the problem into separate tasks. 
As we’ve already discovered, individual password checks can be considered independent 
tasks, and we can execute them in parallel. There are no dependencies, which leads to no 
synchronization points; hence, it is an embarrassingly parallel problem.
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In the following illustration, you can see a diagram of the solution split into several 
steps. The first step is creating ranges of passwords (chunks) to check for each individual 
processing resource. Then we distribute those chunks between available processing 
resources. As a result, we have a set of password ranges that are assigned to each process-
ing resource. The next step will be to run the actual execution. 

Here’s the code:

ChunkRange = T.Tuple[int, int]

def get_chunks(num_ranges: int,

               length: int) -> T.Iterator[ChunkRange]:

    max_number = int(math.pow(10, length) - 1)

    chunk_starts = [int(max_number / num_ranges * i)

                    for i in range(num_ranges)]

    chunk_ends = [start_point – 1

                  for start_point in

                  chunk_starts[1:]] + [max_number]

    return zip(chunk_starts, chunk_ends)

def crack_password_parallel(crypto_hash: str, length: int) -> None:

    num_cores = cpu_count()

    chunks = get_chunks(num_cores, length)

Splits a large range of integers into smaller 
chunks, each containing roughly the same 

number of passwords that can be processed in 
parallel by multiple cores or processors

Gets the number  
of available processors
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    # # DO IN PARALLELDO IN PARALLEL

    # for chunk_start, chunk_end in chunks:

    #     crack_chunk(crypto_hash, length, chunk_start, chunk_end)}

We add a new function, crack_password_parallel, that should execute the 
crack_password function in parallel on multiple cores. It may look different in differ-
ent programming languages, but the idea is the same: it should create a set of parallel units 
and distribute the password ranges between them for parallel execution. This requires the 
use of pseudocode (a human-readable representation of the logic of a program, written in a 
stylized language that mimics actual code), which we discuss further in Chapters 4 and 5.

NOTE Even if we use pseudocode, our example is very realistic in terms of 
usage. For example, the MATLAB language has a parfor construct that 
makes it trivial to use parallel for loops. The Python language has a joblib 
package that makes parallelism incredibly simple using the Parallel class. 
The R language has a Parallel library with the same functionality. The 
standard Scala library has parallel collections to facilitate parallel programming, 
sparing users the low-level parallelization details.

Because of parallel computing, Agent 008 once again saves the world with seconds to 
spare. Unfortunately, most of us don’t have the resources of the FBI; parallel execution 
has its limits and costs, which we need to consider before we apply it to our problems. We 
think about this in the next section.

Pseudocode for processing each chunk in a separate process concurrently



32 Chapter 2  I  Serial and parallel execution

Amdahl’s law
One mother can deliver a baby in nine months. Does this mean nine people working 
together can deliver a baby in one month?

It seems that we can infinitely increase the number of processors and thus make the 
system run as fast as possible. But unfortunately, this is not the case. A famous observa-
tion of Gene Amdahl, known as Amdahl’s law, demonstrates this clearly.

So far, we have analyzed the execution of a parallel algorithm. Although a parallel 
algorithm may have some sequential parts, it is common to think of execution in terms 
of some fully parallel parts and some fully sequential parts. Sequential parts may simply 
be steps that have not been parallelized, or they may be sequential, as we’ve seen before.

Imagine that you have a huge pile of index cards with definitions written on them. 
You want to find cards with information about concurrency and put them in a separate 
stack, but the cards are mixed up. Fortunately, you have two friends with you, so you can 
divide the cards, give each person a pile, and tell them what to look for. Then each of you 
can search your own pile of cards. Once someone finds a concurrency card, they can 
announce it and put it into a separate stack.

This algorithm might look like the following:

1. Divide the pile into stacks, and hand one stack to each person (serial).

2. Everyone looks for a “concurrency” card (parallel).

3. Put the concurrency cards in a separate pile (serial).
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Steps 1 and 3 of this algorithm take 1 second, and step 2 takes 3 seconds. Thus, it takes 5 
seconds to execute the algorithm from beginning to end if you do it yourself. Steps 1 and 
3 are algorithmically sequential, and there is no way to separate them into independent 
tasks and use parallel execution. But you can easily use parallel execution in step 2 by 
dividing the cards into any number of stacks, as long as you have friends to execute this 
step independently. You reduce the execution time of that part to 1 second with the help 
of two friends. The whole program now takes only 3 seconds, which is a 40% speedup. 
The speedup here is calculated as a ratio of the time it takes to execute in a parallel man-
ner with a certain number of processing resources, over the time it takes to execute the 
program in the optimal sequential manner with a single processing resource.
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What happens if we keep increasing the number of friends? For example, suppose you 
add three more friends, making six people total. Now step 2 of the program takes only 
half a second to execute. The whole algorithm takes only 2.5 seconds to complete, which 
is a 50% speedup.

Following the same logic, you can invite all the people in the city and make the parallel 
part of the algorithm execute instantaneously (in theory, you have a communication cost 
overhead, discussed in Chapter 6). You still end up with latency of at least 2 seconds—the 
serial part of the algorithm.

A parallel program runs as fast as its slowest sequential part. An example of this phe-
nomenon can be seen every time you go to the mall. Hundreds of people can shop at the 
same time, rarely disturbing each other. But when it comes time to pay, lines form 
because there are fewer cashiers than shoppers ready to leave.



 Amdahl’s law 35

The same applies to programming. Since we cannot speed up sequential parts of a 
program, increasing the number of resources does not affect their execution. This is 
the key to understanding Amdahl’s law. The potential speed of a program using paral-
lel computing is limited to the sequential parts of the program. The law describes the 
maximum speedup we can expect when we add resources to the system, assuming 
parallel computing. For our example, Amdahl’s law predicts that if two-thirds of a 
program are sequential, no matter how many processors we have, we never get more 
than 1.5× speedup.
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More formally, the law is stated using this formula:

The formula may look harmless until we start putting in values. For example, if 33% of 
the program is sequential, adding 1 million processors can give no more than 3× speedup. 
We can’t accelerate one-third of the program, so even if the rest of the program runs 
instantaneously, the performance gain is limited to 300%. Adding several processors can 
often provide significant acceleration, but as the number of processors grows, the advan-
tage quickly diminishes. The following graphical representation shows the speedup ver-
sus the number of processors for different fractions of code that can be parallelized if we 
do not consider algorithms or coordination overhead.

We can also do the math the other way around—for example, with 2,500 processors, 
what percentage of the program must be perfectly parallelizable to get 100× acceleration? 
Putting the values into Amdahl’s law, we get 100 ≤ 1/(S + (1 – S)/2500). By calculating S, 
we see that less than 1% of the program can be sequential.
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To sum up, Amdahl’s law illustrates why using multiple processors for parallel com-
puting is only really useful for programs that are highly parallelizable. Just because you 
can write programs to be parallel doesn’t mean you always should, because the costs and 
overhead associated with parallelization sometimes outweigh the benefits. Amdahl’s law 
is a handy tool to estimate the benefits of parallelizing a program to determine whether 
it makes sense to do so.

Gustafson’s law
With such disappointing results, it is tempting to abandon parallelism as a way to 
improve performance. You should not be completely discouraged. Parallelism does pro-
vide real acceleration of performance-critical parts of programs, but you can’t speed up 
all parts of a program—unless it is an embarrassingly parallel problem. For other tasks, 
there is a hard limit to the possible gains.

But we can look at Amdahl’s law from a different perspective. Our example program 
ran in 5 seconds—what if we double the amount of work done in the parallelizable part—
not 3 but 6 tasks? So, we would get 6 tasks done simultaneously, and the program would 
still run in 5 seconds, resulting in a total of 8 tasks done—a 1.6× increase over two pro-
cessors. And if we add a couple more processors, each doing the same amount of work, 
we can get 11 tasks done in the same 5 seconds: a 2.6× increase.

According to Amdahl’s law, speedup shows how much less time it will take to execute 
a parallel program, assuming that the volume of the problem remains constant. However, 
the speedup can also be seen as an increase in the volume of the executed task in a con-
stant time interval (throughput). Gustafson’s law emerged from this assumption.

Gustafson’s law gives a more optimistic perspective of parallelism limits. If we keep 
increasing the amount of work, the sequential parts will have less and less effect, and we 
can see speedup in proportion to the number of processors we have.

So if you ever hear Amdahl’s law cited as a reason why parallelism won’t work in your 
case, you can make the observation that Gustafson had an explanation for what to do. 
And that’s the key to why supercomputers and distributed systems have been successful 
with parallelism—because we can keep increasing the volume of data.

Now that we are familiar with parallel computing, it’s time to talk about how it relates 
to concurrency.
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Concurrency vs. parallelism
Conversational meanings of the words parallel and concurrent are mostly synonymous, 
which is a source of significant confusion that extends even to the computer science lit-
erature. Distinguishing between parallel and concurrent programming is important 
because they pursue different goals at different conceptual levels.

Concurrency is about multiple tasks that start, run, and complete in overlapping time 
periods in no specific order. Parallelism is about multiple tasks running at the same time 
on hardware with multiple computing resources, like multicore processors. Concurrency 
and parallelism are not the same thing.

Imagine that one cook is chopping salad while occasionally stirring the soup on the 
stove. The cook has to stop chopping, check the stove, start chopping again, and repeat 
this process until everything is done.

As you can see, we have only one processing resource here—the cook—and their con-
currency is mostly related to logistics. Without concurrency, the cook has to wait until 
the soup on the stove is ready before chopping the salad.

Parallelism is an implementation property. It is the simultaneous physical execution of 
tasks at runtime, and it requires hardware with multiple computing resources. It lies on 
the hardware layer. 

Back in the kitchen, we now have two cooks: one who can do the stirring and one who 
can chop the salad. We’ve divided the work by having another processing resource—
another cook. Parallelism is a subclass of concurrency: before we can do several tasks at 
once, we must first manage several tasks.
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The essence of the relationship between concurrency and parallelism is that concurrent 
computations can be parallelized without changing the correctness of the result, but 
concurrency itself does not imply parallelism. Further, parallelism does not imply con-
currency; it is often possible for an optimizer to take programs with no semantic concur-
rency and break them down into parallel components via such techniques as pipeline 
processing; wide vector operations; single instruction, multiple data (SIMD) operations; 
and divide and conquer (we talk about some of those later in the book).

As Unix and Go programming legend Rob Pike pointed out, “Concurrency is about 
dealing with lots of things at once. Parallelism is about doing lots of things at once.”1 The 
concurrency of a program depends on the programming language and how it is pro-
grammed, while parallelism depends on the actual execution environment. In a single- 
core CPU, we may get concurrency but not parallelism. But both go beyond the tradi-
tional sequential model in which things happen one at a time.

To get a better idea about the distinction between concurrency and parallelism, con-
sider the following points:

• An application can be concurrent but not parallel. It processes more than one 
task over a given period (i.e., juggling more than one task even if no two tasks are 
executing at the same instant—this is described in more detail in Chapter 6).

• An application can be parallel but not concurrent, which means it processes 
multiple subtasks of a single task simultaneously.

1 Rob Pike gave a talk at Heroku’s Waza conference entitled “Concurrency is not parallelism,” 
https://go.dev/blog/waza-talk.
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• An application can be neither parallel nor concurrent, which means it processes 
one task at a time sequentially, and the task is never broken into subtasks.

• An application can be both parallel and concurrent, which means it processes 
multiple tasks or subtasks of a single task concurrently at the same time 
(executing them in parallel).

Imagine you have a program that inserts values into a hash table. In terms of spreading 
the insert operation between multiple cores, that’s parallelism. But in terms of coordi-
nating access to the hash table, that’s concurrency. And if you still don’t understand the 
latter, don’t worry; the following chapters explain the concept in detail.

Concurrency covers various topics, including the interaction between processes, shar-
ing and competition for resources (such as memory, files, and I/O access), synchroniza-
tion between multiple processes, and allocation of processor time between processes. 
These problems arise not only in multiprocessor and distributed processing environ-
ments but also in single-processor systems. In the next chapter, we start by understand-
ing the environment the program is running in—the computer hardware and runtime 
system.

Recap
• Every problem, when formulated into an application, is divided into a series of 

tasks that, in the simplest case, are executed serially.

• A task can be thought of as a logically independent piece of work.

• Sequential computing means each task in a program depends on the execution of 
all previous tasks in the order in which they are listed in the code.

• Serial execution refers to a set of ordered instructions executed one at a time on 
one processing unit. Serial execution is required when the input to each task 
requires the output of a previous task.

• Parallel execution refers to executing multiple computations at the same time. 
Parallel execution can be used when the tasks can be performed independently.

• Parallel computing uses multiple processing elements simultaneously to solve a 
problem. This often leads to significant program redesign—decomposition of the 
problem, creating or adapting an algorithm, adding synchronization points to 
the program, and so on.
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• Concurrency describes working on multiple tasks at the same time. Parallelism 
depends on the actual runtime environment, and it requires multiple processing 
resources and task independence in a decomposed algorithm. The concurrency 
of a program depends on the programming language and how it is programmed, 
while parallelism depends on the actual execution environment.

• Amdahl’s law is a handy tool to estimate the benefits of parallelizing a program 
to determine whether it makes sense to do so.

• Gustafson’s law describes how to get more work out of systems despite the 
limitations of Amdahl’s law.
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Twenty years ago, a working programmer could go for years without 
encountering a system that had more than two processing resources. Today, 
even a mobile phone has multiple processing resources. A modern pro-
grammer’s mental model needs to encompass multiple processes running 
on different processing resources at the same time.

When describing concurrent algorithms, it is not necessary to know the 
specific programming language to implement a program. It is necessary, 
however, to understand the features of the computer system on which the 
algorithm will be executed. You can construct the most effective concur-
rent algorithm by selecting the types of operations that most fully utilize 
computer system hardware. Therefore, you need to understand the poten-
tial capabilities of different hardware architectures.

In this chapter

• You learn the details of how code is executed  

on the CPU

• You learn about the functions and goals  

of the runtime system

• You learn how to choose hardware suitable  

for your problem

3How  
computers work
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Since the goal of using parallel hardware is performance, the efficiency of our code is 
a major concern. This, in turn, means we need a good understanding of the underlying 
hardware we are programming. This chapter provides an overview of parallel hardware 
so you can make informed decisions when designing software.

Processor
The term central processing unit (CPU) originated in the misty days of the first computers 
when one massive cabinet contained the circuitry needed to interpret and execute machine 
instructions. The CPU also performed all operations for connected peripheral devices like 
printers, card readers, and early storage devices such as drum and disk drives. 

The modern CPU has become a slightly different device, more focused on its primary 
task of executing machine instructions. The CPU can easily process these instructions 
thanks to the control unit (CU), which interprets machine instructions, and the arithme-
tic logic unit (ALU), which performs arithmetic and bitwise operations. Thanks to the 
CU and ALU together, the CPU processes more complex programs than a simple calcu-
lator can.

Components of the CPU

But another component of the CPU also plays an important role in speeding up execution.

Cache

The cache is temporary memory on the CPU. This chip-based feature of a computer lets 
us access information more quickly than from the computer’s main memory.

Imagine a joinery workshop with one joiner. The joiner (CPU) has to fulfill incoming 
customer requests (instructions). To make the product the customer wants, the joiner 
creates nearby temporary storage for fresh wood and some resources without having to 
go to the warehouse where they keep all their supplies (hard disk drive [HDD]).
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The temporary storage is the memory attached to the CPU—called random access mem-
ory (RAM)—that is used to store data and instructions. When a program starts to run, 
executable files and data are copied to the RAM and stored until the end of the program 
execution. 

But the CPU never directly accesses RAM. The CPU’s ability to perform calculations 
is much faster than the RAM’s ability to transfer data to the CPU. Modern CPUs have 
one or more levels of cache memory to speed up access. 

Going back to the workshop, in addition to having access to temporary storage in the 
workshop, the joiner always needs fast access to their tools, so those should always be at 
hand. The joiner stores them on a workbench for fast access. You can think of the cache 
memory as a workbench for the processor.
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Cache memory is faster than RAM, and it is closer to the CPU because it is located on the 
CPU chip. Cache memory provides storage for data and instructions so the CPU doesn’t 
have to wait for data to be retrieved from RAM. When the processor needs data—and 
program instructions are considered data—the cache controller determines whether the 
data is in the cache and provides it to the processor. If the requested data is not in the 
cache, it is retrieved from RAM and moved to the cache. The cache controller analyzes 
the requested data, predicts what additional data will be required from RAM, and loads 
it into the cache. 

A processor has three levels of cache: levels 1, 2, and 3 (L1, L2, and L3). Levels 2 (L2) and 3 
(L3) are designed to predict what data and instructions will be needed next, moving them 
from RAM to the L1 cache so they are closer to the processor and ready when needed. The 
bigger the level, the slower the communication channel is, and the more memory is avail-
able. The L1 cache is closest to the processor. Because of the additional cache levels, the 
processor can stay busy and not waste cycles waiting for the required data.
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Almost all data access and communication add up to execution latency—the communi-
cation cost—and it’s one of the biggest threats to system performance. Cache exists to 
mitigate or at least soften these communication costs. Let’s take a look at how it would 
affect latency if things were scaled up into everyday units that humans can intuitively 
picture (this is called scaled latency).

System event Actual latency Scaled latency

One CPU cycle 0.4 ns 1 s

L1 cache access 0.9 ns 2 s

L2 cache access 2.8 ns 7 s

L3 cache access 28 ns 1 min

Main memory access (RAM) ~100 ns 4 min

High-speed SSD I/O <10 µs 7 h

SSD I/O 50–150 µs 1.5–4 days

HDD I/O 1–10 ms 1–9 months

Network request, San Francisco to NYC 65 ms 5 years

Having said that, let’s look at the actual execution cycle.

CPU execution cycle

Back to the workshop again. Our single joiner does all the work, from communicating 
with customers to the actual woodworking. This work includes getting customer ideas, 
translating those ideas into task items, executing tasks, and giving the results to the cus-
tomers. The joiner spends all their time in this cycle, and that’s what keeps the business 
running.

Similarly, the CPU carries out a continuous process of instruction execution through 
various stages. These sequences of stages are known as the CPU cycle. In their simplest 
form, processors operate in four different stages:
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CPU execution cycle

1. Fetch. The CU fetches the instruction from memory or cache and copies it to the 
CPU. In this process, the CU uses various counters to understand what 
instruction to fetch and where to find it. 

2. Decode. The previously fetched instruction is decoded and sent for processing. 
Different types of instructions do different things, so depending on the type of 
instruction and the operation code, we need to know which processing units the 
instructions will be sent to.

3. Execute. The compute instruction is then moved to ALU and starts the execution.

4. Store the result. Once the instruction is complete, the result is written into RAM, 
and the next instruction starts its execution. Then the processor goes back to step 
1 until there are no more instructions left to fetch.

The processor spends all its time in this cycle, endlessly retrieving the next instruction, 
decoding it, executing it, and storing the result.

Runtime system
Working with the CPU is not a simple process. Developers have to handle everything 
ourselves, including the various operational tasks: controlling hardware resources, man-
aging access to those hardware resources, managing the exact functionality that should 
be executed, providing isolation between programs in case of a crash, accessing shared 
resources, and so on.
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Modern systems need to be multipurpose and hence are complex. Eventually, they 
become overgrown with many software systems related to specific management tasks, 
such as file management systems, graphics management systems, and task management 
systems. These are all examples of microprogram management systems that eventually 
evolved into an additional level of abstraction introduced between the application and 
the system: the runtime system, the common example of which is an operating system.

Going back to the workshop, our joiner starts getting strange orders from customers, 
like delivering wood, building a ship or bridge, or making products beyond the ability of 
the joiner’s tools. The joiner realizes that these orders are coming to them from custom-
ers by mistake, since other businesses do the requested work. The joiner decides to hire 
someone to take care of these requests and give the workshop only the work the joiner 
can do. So, they arrange with the other business owners on the same street to hire a man-
ager to handle incoming requests. This manager has the customer complete a predeter-
mined form, determines the right business to fulfill the request, and passes the request 
to the joiner or other business.

The manager is the operating system (OS), a low-level system interface between the 
hardware component of the computer system and the developer. Those interfaces are 
called system calls. They interact with the computer hardware and provide services and 
utilities that user applications can use.

For example, when a program wants to write data to a disk, it delegates that task to the 
OS. The OS gives instructions to the disk using the disk controller that can send the right 
signals to the disk. The program that wants to use a disk doesn’t worry about what kind 
of disk the system has or understand how it works. The OS handles the details and, if 
possible, tries to protect the hardware and other resources from improper use. This 
introduces overhead as the program uses OS functionality without directly communi-
cating with the hardware. Sometimes this can be critical, and it is advantageous to do 
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something at the user application level instead of introducing a system call. I describe 
specific examples in the following chapters.

To execute a program using the OS, the first step is loading the executable file and any 
static data (such as initialized variables) into memory. Then we start the program from 
the entry point: main(). When the OS switches to main(), control of the processor is 
transferred to the program, and thus our program begins its execution under the control 
and protection of the OS.

All modern computer systems follow these steps. The process may be more sophisti-
cated than the one described, but overall, the design components are the same.

Design of computer systems
If you look at the organization of a computer system, you will see one or more processors, 
RAM that the processors can access, various peripheral devices (printers, card readers, 
hard drives, monitors, etc.), and device controllers or drivers that allow all of those devices 
to communicate with the processor or RAM. There is a channel to connect everything: the 
system bus allows communications between the CPU, RAM, and peripheral devices.

Let’s now turn our attention to user space and kernel space, two distinct areas in a com-
puter system. User space is where user-level applications run, and kernel space is where 
the OS’s core functions and system calls run. The distinction is important because 
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applications in user space cannot access or modify the underlying system, while the ker-
nel has complete control over the system and its resources. The internal design of a com-
puter system remains largely the same regardless of hardware platform specifics, such as 
the form factor, OS structure, or intended use.

With this understanding of the general components of the design, let’s move on to 
look at the several levels of parallel hardware that this design can represent.

Multiple levels of concurrent hardware
CPUs are composed of many circuits (ALUs) that can perform basic arithmetic opera-
tions (like addition or multiplication). Because of this, the CPU can break up complex 
mathematical operations so that subparts of the operation run on separate arithmetic 
units simultaneously. This is called instruction-level parallelism. Sometimes this type 
of parallelism is taken to an even deeper level: bit-level parallelism. (Most developers 
rarely think about this level. The work of arranging instructions in the most conve-
nient sequence for the processor is done by the compiler. Only a small group of engi-
neers trying to squeeze all possible power from the processor or compiler are interested 
in this level.)

Another simple idea for creating parallel hard-
ware is to install more than one chip in a com-
puter system, replicating the processor, just like 
hiring a manager so all craftspeople can work 
together on incoming customer requests. This is a 
multiprocessor, which is what we can call any 
computer system with more than one processor.

A multicore processor is a special kind of mul-
tiprocessor with all processors on the same chip. 
Each core works independently, and the OS per-
ceives each core as a separate processor. There 
are slight differences between these two 
approaches in terms of how quickly the processors can work together and how they 
access memory, but for this book, we treat them as the same.

Symmetric multiprocessing architecture

Computer memory usually operates at a much slower speed than processors do, resulting 
in the communication costs mentioned in Chapter 2. That’s why most multiprocessor 
systems today use symmetric multiprocessing (SMP) architecture. SMP is a set of identi-
cal processors connected to shared memory with a single address space and operating 
under the same OS.

A multicore processor



52 Chapter 3  I  How computers work

The processors in SMP architecture are linked by an interconnection network via the 
system bus. Although these networks are fast, if processors need to exchange data, the 
exchange is not instantaneous because it must go through one or more interconnections. 
These communication costs are not negligible, and this problem worsens the latency as 
the number of interacting resources and the distance between them increases. Thus, in 
the SMP architecture, all processors have their own private cache to reduce system bus 
traffic, resulting in lower latency.

Symmetric multiprocessing (SMP) architecture consists of multiple  
interconnected processors that have shared memory.

The coolest feature of SMP is that the existence of multiple processors is transparent to 
the end user. The OS takes care of scheduling processes on individual processors and 
synchronization among those processors. However, in such systems, increasing the 
number of processors connected to a common system bus makes it a bottleneck. This 
problem is worsened by cache coherence, where multiple processor cores share the same 
memory hierarchy but have their own L1 data and instruction caches.

NOTE The development of the MESI protocol in the 1980s solved the 
problem of cache coherence in multiprocessor systems. By tracking the state 
of each cache line, MESI ensures that all processors have a consistent view of 
the data, allowing for efficient and conflict-free collaboration. Today, MESI is 
an essential part of modern computing.

The only way to move beyond SMP to large, massively parallel computers is to abandon 
the shared memory architecture and move to distributed memory systems called com-
puter clusters. These clusters are distributed machines with their own CPUs, connected 
via a network. Computer clusters are very powerful parallel systems. One machine can-
not share memory with another, as each operates independently. If one machine changes 
its local memory, that change is not automatically reflected in the memory of processors 
on other machines. Hence, clusters typically have distributed memory that leads to 
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greater communication costs because we need to communicate via a network, which is 
much slower than transferring data between processes on the local machine.

Clusters are appropriate for loosely coupled problems (which do not require frequent 
communication between processors but do require more power), while tightly coupled 
problems are more suitable for single-machine systems. The advantage of clusters is 
high scalability. The disadvantage is the high communication costs. We discuss dis-
tributed systems in detail in later chapters, but right now, we focus on the types of 
multiprocessor architectures.

Taxonomy of parallel computers

One of the most widely used systems for classifying multiprocessor architectures is 
Flynn’s taxonomy. It distinguishes four classes of computer architectures based on two 
independent dimensions: instructions and data flow.

The first and second categories of computer architectures—single instruction, single 
data (SISD) and multiple instruction, single data (MISD)—involve processing one block of 
data with one or multiple instructions, respectively. However, as they lack parallelization, 
they are irrelevant for concurrent systems and are only mentioned here for reference.

The third category is single instruction, multiple data (SIMD), which features shared 
control units across multiple cores. With this design, only one instruction can be exe-
cuted simultaneously on all available processing resources, allowing the same operation 
to be performed on a large set of data elements simultaneously. However, the instruction 
set in SIMD machines is limited, making them suitable for solving specific problems that 
require high computing power but not much versatility. Graphics processing units 
(GPUs) are a well-known example of SIMD today.

The fourth category is multiple instruction, multiple data (MIMD). Here, each pro-
cessing resource has an independent control unit. So, it is not limited to certain types 
of instructions and executes different instructions independently on a separate block 
of data. Thus, it includes architectures with multiple cores, multiple CPUs, or even 
multiple machines so that different tasks can be executed simultaneously on several 
different devices. 
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MIMD has a wider set of instructions, so the individual processing resources are 
more versatile than in SIMD. That’s why MIMD is the most commonly used architec-
ture in Flynn’s taxonomy, and you’ll find it in everything from multicore PCs to dis-
tributed clusters.

CPU vs. GPU

Even if you don’t play video games, you can be grateful to the players because they have 
spawned a class of very powerful parallel processing devices: GPUs. The CPU and GPU 
are similar. They both have millions of transistors and can process a vast number of 
instructions per second. But how are these two important components different, and 
when should we use one or the other?

Standard CPUs are built using the MIMD architecture. A modern CPU is powerful 
because engineers have implemented a wide variety of instructions in them. And a com-
puter system can complete a task because its CPU can complete that task.

The GPU is a specialized type of processor similar to SIMD architecture, optimized 
for a very limited set of instructions. The GPU operates at a lower clock speed than the 
CPU but has more cores—hundreds or even thousands that run simultaneously. That 
means it performs a huge number of simple instructions at incredible speed due to mas-
sive parallelism.
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NOTE For example, the NVIDIA GTX 1080 graphics card has 2,560 cores 
with 1607 MHz clock speed. Thanks to these cores, the NVIDIA GTX 1080 can 
perform 2,560 instructions per clock cycle. If we want to make the picture 1% 
brighter, the GPU will cope with this without any difficulty. But the Intel Core 
i9-10940X CPU with 3.3 GHz can execute only 14 instructions per clock cycle.1

Although individual CPU cores are faster, based on clock speed, and have extensive 
instruction sets, the sheer number of GPU cores and the massive parallelism they pro-
vide more than compensate for the difference in CPU core clock speed and limited 
instruction set. CPUs are just better suited for complex linear tasks.

GPUs are best suited for repetitive and highly parallel computational tasks such as video 
and image processing, machine learning, financial simulations, and many other types of 
scientific computing. Operations such as matrix addition and multiplication are easily 
performed using a GPU because most of these operations in matrix cells are independent 
of each other and are similar and, therefore, can be parallelized.

Hardware architectures are highly variable and can affect the portability of programs 
between different systems. In addition, programs sometimes inherently accelerate dif-
ferently depending on where they run. For example, many graphics programs run much 
better and faster on GPU resources, while ordinary programs with mixed logic make 
sense to run on the CPU.

In this book, we use the term CPU in a general sense that covers both types of process-
ing resources. With all the components of physical execution in mind, in the next chap-
ter, we add a couple of easy-to-use abstractions that represent instruction streams.

1 Intel Core i9-10940X X-series processor specifications, http://mng.bz/JgGz.
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Recap
• Execution depends on the actual hardware. Modern hardware has multiple 

processing resources—multiple cores, multiprocessors, or computer clusters—and 
they are optimized for executing programs.

• Flynn’s taxonomy describes four types of architecture based on whether the 
system processes single or multiple instructions at a time (SI or MI) and whether 
each instruction acts on single or multiple blocks of data (SD or MD).

• A GPU is an example of SIMD architecture. It’s optimized for highly parallel  
task execution.

• Modern multiprocessors and multicore processors are examples of MIMD. They 
are far more complex because they’re multipurpose.

• The processor or CPU is the brain of the computer system, but it’s difficult to 
work with directly. In programming, an additional level of abstraction is 
introduced between the application and the system: the runtime system.

• To exploit parallel execution, an application developer needs a processing unit 
that is suitable for the problem. A CPU has a higher clock frequency and a wider 
set of instructions that can be executed in parallel, while a GPU operates at a 
lower clock speed and executes only one instruction across all of the cores, but it 
does so at incredible speed due to massive parallelism.
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Concurrent programming involves breaking down applications into inde-
pendent units of concurrency. In previous chapters, we referred to these 
units as tasks for organizing the flow of the application. Now, with knowl-
edge of the hardware being used, we need to map these abstractions onto 
the physical devices executing the code. Fortunately, another layer of 
abstraction can handle this task: the OS. Its role is to apply the available 
hardware as efficiently as possible, but it is not a magical solution. This 
chapter focuses on how developers can structure their programs to aid the 
OS in achieving optimal hardware utilization.

In this chapter

• You learn more about the middle layer of concurrency: 

the runtime system, a popular example of which is 

the operating system

• You learn the internals of the two basic concurrency 

abstractions: threads and processes

• You learn how to implement concurrent applications 

using threads and processes

• You learn how to choose the concurrency abstraction 

suitable for your problem

4Building blocks  
of concurrency
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Concurrent programming steps
Concurrent programming is a set of abstractions that allow the developer to structure 
the program to generate small, independent tasks and pass them to the runtime system, 
queuing them for execution. The runtime system orchestrates tasks to optimally utilize 
system resources and passes them for execution on appropriate processing resources. 
The two main abstractions used to accomplish this in concurrent programming are pro-
cesses and threads.

Processes
The informal definition of a process is relatively straightforward: it is a running program. 
The program itself is a lifeless thing. It sits on a disk, representing a set of instructions 
waiting to be executed. The OS takes these instructions and executes them on hardware, 
turning the program into something useful.

Imagine a car. A car is just a set of mechanical parts that together make up a car. Even 
though the car has great potential, it has no value if it stands still. But when someone 
turns the key and the engine starts running, the car can move. It evolves into the process 
of driving. It becomes not just a car but a trip from point A to point B, bringing value. 
The car facilitates the desired action.

Source code is like the car. It is just a passive sequence of instructions that operate with 
resource abstractions. When writing source code, developers do not have memory to 
store temporary data, files to read or write, or devices they want to send signals to. 
Developers write code using real-world models built upon abstractions provided by pro-
gramming languages and runtime environments. Actual resources must be provided at 
the time of execution. 

The abstraction provided by the OS for a running program is what we call a process. 
There is no concept of a process at the level of machine instructions.
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The purpose of using processes in an OS is to isolate tasks and allocate hardware 
resources for their execution. All processes in an OS share hardware resources and are 
managed by the OS. To ensure that the OS knows the relationship between processes and 
resources, each process must have its own independent address space and file table. 
Therefore, processes are the unit for resource allocation in the OS.

OSs provide the illusion of full ownership of the computer system to each process, 
even though there are usually multiple processes running concurrently. To maintain this 
illusion, OSs take great care to control and protect processes and isolate them from each 
other. This includes controlling the allocation of CPU cores and memory for each pro-
cess. The main advantage of processes is the complete independence and isolation of 
their execution from the rest of the system, preventing accidental interference with 
global objects and ensuring that crashes of one program do not affect others.

From this advantage, however, comes a disadvantage. Processes are independent of 
each other by design, which makes communication between them difficult. Formally, 
processes have almost nothing in common, and any nontrivial communication between 
processes requires using other mechanisms, which are usually several orders of magni-
tude slower than direct access to data. We talk about that in detail in Chapter 5; for now, 
let’s look inside the process.

Process internals

As we have said, a process is just a running program. At any given time, we can assemble 
a process by making a list of the various parts of the computer system that it accesses or 
modifies at runtime:

• The data the process reads or writes to is stored 
in memory. Thus, the memory the process can 
see or access (the address space) is part of the 
running process. 

• The executable file with all the machine 
instructions is part of the process. 

• The process also needs an identifier: a unique 
name by which the process can be identified. It 
is called a process ID (PID). 

• Finally, programs often access disks, network 
resources, or other third-party devices. Such 
information must include a list of files currently 
open by the process, open network connections, 
and any additional information about the 
resources it uses.
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Thus, a process encapsulates many things: an executable file, the set of resources used 
(files, connections, etc.), and the address space with internal variables. All of this is called 
execution context. Because so many things exist inside processes, starting a new process 
is a pretty heavy thing to do. That’s why they are often called heavyweight processes. 

Process states

If you look at a process from a high level, everything appears trivial. At first, it seems the 
process doesn’t exist. Then it is created and initialized, after which it exists somewhere 
in computer memory (the Created state). When the user code starts a process, it goes to the 
Ready state—it is ready to be executed on a processor core at any moment, but it doesn’t do 
anything yet. It needs a processing resource to start the execution. Then the OS selects the 
next process to be executed on the CPU from the list of processes ready for execution. After 
the OS chooses a process, the chosen process goes into the Running state.

Processes are usually created by the OS. Apart from creating processes, the OS is also 
responsible for process termination. This is not a trivial task. The OS needs to under-
stand that the process is finished—either the task is complete, the process failed and it’s 
time to clean it up, or the parent process is dead. Creating or terminating a process is 
relatively expensive because, as we have seen, a process has many resources attached to 
it, and they must be created or freed up. Doing so takes system time and introduces addi-
tional latency.
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Multiple processes

Processes can create their own processes—called child processes—through appropriate sys-
tem calls, such as fork() or spawn(); this process is called spawning. Child processes are 
independent forks of the main process with a separate memory address space, which again 
means the process works independently and is isolated from others by the OS’s control. It 
cannot directly access the data of other processes, and instructions belonging to each pro-
cess are executed in the corresponding process independently and, ideally, in parallel. 

Now we are moving into the territory of concurrency. Using spawning programs, exe-
cution can be decomposed into multiple processes that can be executed simultaneously 
on parallel hardware.

However, this is probably easier to understand in code than in theory. Here is an example 
of a program that makes three child processes using a forking mechanism:

# Chapter 4/child_processes.py

import os

from multiprocessing import Process

def run_child() -> None:

    print(“Child: I am the child process”)

    print(f”Child: Child’s PID: {os.getpid()}”)

    print(f”Child: Parent’s PID: {os.getppid()}”)
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def start_parent(num_children: int) -> None:

    print(“Parent : I am the parent process”)

    print(f”Parent : Parent’s PID: {os.getpid()}”)

    for i in range(num_children):

        print(f”Starting Process {i}”)

        Process(target=run_child).start() 

if __name__ == “__main__”:

    num_children = 3

    start_parent(num_children)

The code creates a parent process with three child processes that are copies of the parent 
process; the only difference is the process ID. The execution of the parent and child pro-
cesses is independent. 

NOTE It’s important to note that when forking a process, the new process 
starts its execution from the point where the forking occurred, and its internal 
state is copied. It does not execute the script again from the beginning. 

The program outputs messages from the parent and child processes with their respected 
PIDs, similar to the following:

Parent : I am the parent process

Parent : Parent’s PID: 73553

Parent : Child’s PID: 73554

Child: I am the child process

Child: Child’s PID: 73554

Child: Parent’s PID: 73553

Parent : I am the parent process

Parent : Parent’s PID: 73553

Parent : Child’s PID: 73555

Child: I am the child process

Child: Child’s PID: 73555

Child: Parent’s PID: 73553

Parent : I am the parent process

Parent : Parent’s PID: 73553

Parent : Child’s PID: 73556

Child: I am the child process

Child: Child’s PID: 73556

Child: Parent’s PID: 73553

Programming languages commonly have high-level abstractions or service methods for 
working with processes as they are easier to maintain and follow in the program source code. 

Spawns a new process. 
The start() method starts 
the run_child function in  
a separate process.
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NOTE This forking/spawning approach has been implemented in prefork 
mode in several popular server technologies. Preforking means a server 
creates forks at server startup, which then handle incoming requests. NGINX, 
Apache HTTP Server, and Gunicorn work in this mode, allowing them to 
handle hundreds of requests. But these solutions also support other methods.

Threads
Sharing memory between processes is possible on most OSs, but it requires additional effort 
(we discuss this in Chapter 5). Another abstraction allows us to share a bit more: threads.

In the end, a program is simply a set of machine instructions that must be executed 
one after the other in sequence. To make this happen, the OS uses the concept of a thread. 
Technically, a thread is defined as an independent stream of instructions whose execu-
tion can be scheduled by the OS.

Remember we said that a process is a running program plus resources? If we split the 
program into separate components, a process is a container of resources (address space, 
files, connections, etc.), and a thread is a dynamic part—a sequence of instructions exe-
cuted inside this container. Therefore, in the OS context, a process can be seen as a unit 
of resources, while a thread can be viewed as a unit of execution.

But threads were born from the idea that the most efficient way to share data between 
interacting processes is to share a common address space. Thus, threads in a single pro-
cess are like processes that can easily share resources with each other and their parent 
process, such as address space, files, connections, shared data, and so on. 

Threads also maintain their own state to allow for the safe, local, independent execution 
of their instructions. Each thread is unaware of the other threads unless it is interfering 
with them on purpose. The OS manages the threads and can distribute them among the 
available processor cores. Thus, creating a multithreaded program can be a convenient 
way to run multiple tasks concurrently. 
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To illustrate the difference between processes and threads, let’s look at an example. 
Imagine that you are managing a construction company, and you hire three construc-
tion crews to work on three different projects. 

This is a process-like job. Each construction crew (process) is dedicated to one project 
(task) with its own tools, project plan, and resources. On the other hand, to save money, 
you could hire just one construction crew for all three different projects; they would use 
common tools and resources, but there would be a separate list of instructions for each 
project, similar to how threads work.
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Historically, hardware vendors implemented their own versions of threads. These imple-
mentations differed significantly, making it difficult for developers to implement porta-
ble threaded applications. A standardized programming interface was needed. 

For UNIX systems, this interface was defined by IEEE POSIX1 and is available as an 
optional library for Windows-family OSs. Implementations that adhere to this standard 
are called POSIX threads or Pthreads (also the name of the C library implementation). 
Most hardware manufacturers use Pthreads, so we’ll talk more about this standard.

In the standard, every program we run causes the OS to create a process, and every 
process has at least one thread; a process without a thread cannot exist. Each thread also 
maintains its independent execution context to ensure that its instructions are executed 
safely and independently.

Thread features

Properly implemented, threads have advantages and disadvantages compared to 
processes.

Advantage: Less memory overhead

Processes are completely independent, each with its own address space, set of threads, 
and copies of variables that are completely independent of the same variables in other 
processes. Threads have much less memory overhead than the standard fork() func-
tion as the parent thread is not copied—threads use the same process. Because of this, 
threads are also sometimes called lightweight processes.

Consequently, we can create more threads than processes on the same system. 
Creating and terminating threads is faster than processes because it takes less time for 
the OS to allocate and manage thread resources. Because of this, we can create threads 
whenever it makes sense in an application and not worry about wasting CPU time and 
memory.

Advantage: Less communication overhead

Each process works with its own memory. Processes can only exchange something 
through a process communication mechanism, which we discuss in Chapter 5. 

Threads use the same address space and therefore can communicate with each other 
by writing and reading to the shared address space of their parent process without any 
problems or overhead: anything changed by one thread is immediately available to all. 
Hence, for widely used SMP systems, it is sometimes much more convenient to use 
threads than processes.

1 IEEE POSIX 1003.1c (1995), https://standards.ieee.org/ieee/1003.1c/1393.
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Disadvantage: Need for synchronization

The OS provides complete independence of processes from each other, so if one of them 
crashes, other processes are not harmed. This is not the case with threads: since all 
threads in a process use the same shared resources, if one crashes or is corrupted, the 
others will likely be affected. To prevent this from happening, developers need to syn-
chronize access to shared resources and have more control over the behavior of threads 
(we discuss this in Chapter 8).

Thread implementation

A thread-based approach is a common way to achieve concurrency in many languages. 
This does not mean threads are explicitly used in programming languages. Instead, the 
runtime environment can map other programming language concurrency constructs to 
physical threads at runtime. Programming languages usually have higher-level abstrac-
tions for creating processes because they are easier to maintain and keep track of in the 
program’s source code.

NOTE Avoid using low-level threads if you can get away with it. Look at 
libraries that abstract away the need to use low-level threads. A general 
implementation of POSIX is presented in C/C++ as a library of functions. 
Modern languages such as Python, Java, and C# (.NET) provide a set of 
abstractions on top of native threads that most closely match these languages’ 
design characteristics. Similarly, the property of multiple threads can be 
idiomatically hidden in a language such as Go’s goroutines, Scala parallel 
collections, Haskell’s GHC, Erlang processes, OpenMP, and others. These 
implementations are portable in any OS that provides the runtime 
implementation required by these languages.

Here is an example in Python where we are creating five child threads:

# Chapter 4/multithreading.py

import os

import time

import threading

from threading import Thread

def cpu_waster(i: int) -> None:

    name = threading.current_thread().getName()

    print(f”{name} doing {i} work”)

    time.sleep(3)
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def display_threads() -> None:

    print(“-” * 10)

    print(f”Current process PID: {os.getpid()}”)

    print(f”Thread Count: {threading.active_count()}”)

    print(“Active threads:”)

    for thread in threading.enumerate():

        print(thread)

def main(num_threads: int) -> None:

    display_threads() 

    print(f”Starting {num_threads} CPU wasters...”)

    for i in range(num_threads):

        thread = Thread(target=cpu_waster, args=(i,))  

        thread.start()      

    display_threads() 

if __name__ == “__main__”:

    num_threads = 5

    main(num_threads)

Here is the output:

----------

Current process PID: 35930

Thread Count: 1

Active threads:

<_MainThread(MainThread, started 8607733248)>

Starting 5 CPU wasters...

Thread-1 doing 0 work

Thread-2 doing 1 work

Thread-3 doing 2 work

Thread-4 doing 3 work

Thread-5 doing 4 work

----------

Current process PID: 35930

Thread Count: 6

Active threads:

<_MainThread(MainThread, started 8607733248)>

<Thread(Thread-1, started 12940410880)>

<Thread(Thread-2, started 12945666048)>

<Thread(Thread-3, started 12950921216)>

<Thread(Thread-4, started 12956176384)>

<Thread(Thread-5, started 12961431552)>

Displays information 
about the current 
process, such as its 
PID, thread count, 
and active threads

Creates and starts a new thread
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When we start our program, we create a process in which a main execution thread is 
created. Note that any thread, including the main thread, can create child threads at any 
time (that’s why we have Thread Count: 6 in the output). In our example, we create 
five new threads and run them concurrently.

Processes and threads are the building blocks of concurrency, and we talk a lot about 
them; but whether you work with threads or processes, you can think of them all as 
threads, because every process has at least one thread. Later in the book, we use the term 
task as a generic entity if the specific implementation is not important.

Before we move on, you’ve probably figured out by now that implementing concur-
rency is not easy work. Over the course of the last four chapters, we’ve outlined just how 
difficult it can be. After reading this far, you may wonder if it’s right for you. But let’s take 
a moment for some encouragement.

Think of kittens in a basket of yarn. They are inquisitive, experimental, and love a 
good time. Kittens don’t look at the knitting basket with dismay—they see it as a play-
ground to explore, disassemble, and make their own.

A good programmer is much the same way. You’ve got processes, shared resources, 
threads, open files, and data to work with, all to create a program that can solve real-
world problems, automate tasks, or entertain millions of users.

So be encouraged, and press on. Grab that thread and unravel it. What you do from 
here on could change the world.
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Recap
• The OS’s job is to map execution onto the actual hardware.

• A process is an instance of a program running within a computer system. Each 
process has one or more threads of execution, and no thread can exist outside a 
process.

• A thread is a unit of computation, an independent set of programming 
instructions designed to achieve a particular result, which the OS independently 
executes and manages.

• Multiple execution threads can exist within the same process and share 
resources, while processes are almost independent. 

• Using threads makes it easy to create concurrent applications because switching 
between threads is easier than switching between processes. Moreover, threads 
use a common address space, resulting in faster access to shared data. But there is 
also a risk of data corruption, which requires some caution to control access and 
synchronization to shared objects.
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We can’t always guarantee that concurrent tasks running on a computer are 
independent. Often, communication between tasks is necessary for effi-
cient execution. For example, if one task depends on the result of another, 
the application has to know when to pause its work while it waits for the 
other task to finish.

Communication is therefore at the heart of any concurrent system. If we 
cannot ensure proper communication between tasks, the performance 
gains from concurrency are meaningless. In this chapter, you learn about 
the concepts provided by the OS to allow processes and threads to commu-
nicate and coordinate their work. We start by looking at the different types 
of communication you’re likely to encounter in a concurrent system.

In this chapter

• You learn how to achieve effective task 

communication

• You learn how to choose a communication type for 

your applications

• You learn a popular programming pattern for creating 

concurrent applications: a thread pool

5Interprocess 
communication
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Types of communication
The OS provides mechanisms allowing processes and threads to communicate with each 
other. These mechanisms are called interprocess communication (IPC). Once you decide 
that your application will benefit from IPC, you must decide which of the available IPC 
methods to use on your system.

NOTE IPC is called interprocess communication, but that does not mean 
only processes need to communicate. Whether you work with threads or 
processes, you can think of them all as threads because every process has at 
least one thread, so de facto communication only occurs between threads. 
Ignore the confusing terminology—we use the term task as a general 
abstraction for the unit of execution.

The most popular types of IPC are via shared memory and message passing.

Shared-memory IPC

The simplest way to communicate between tasks is to use shared memory. Shared mem-
ory allows one or more tasks to communicate through common memory that appears in 
all their virtual address spaces as if they were reading and writing to local variables that 
were part of their address space. So, changes made by one process or thread are instantly 
reflected in the others without interacting with the OS.

Imagine that you live in the same house with 
several friends. There’s a shared kitchen with a 
single refrigerator for everyone’s use. You can get 
a beer for yourself and inform your friends that 
they can find a six-pack on the lowest shelf. The 
refrigerator serves as shared memory, used by all 
friends (tasks) to store beer (shared data).

Shared-memory IPC can be found if two pro-
cessors (or processor cores) in the same computer 
refer to the same physical memory location or 
when threads within the same program share the 
same objects. In the code, it looks like this:

# Chapter 5/shared_ipc.py

import time

from threading import Thread, current_thread

SIZE = 5

shared_memory = [-1] * SIZE   

Sets up shared 
memory of size SIZE



 Types of communication 73

class Producer(Thread):

    def run(self) -> None:

        self.name = “Producer”

        global shared_memory

        for i in range(SIZE):

            print(f”{current_thread().name}: Writing {int(i)}”)

            shared_memory[i - 1] = i 

class Consumer(Thread):

    def run(self) -> None:

        self.name = “Consumer”

        global shared_memory

        for i in range(SIZE):

            while True: 

                line = shared_memory[i] 

                if line == -1: 

                    print(f”{current_thread().name}: Data not available\n”

                          f”Sleeping for 1 second before retrying”) 

                    time.sleep(1) 

                    continue 

                print(f”{current_thread().name}: Read: {int(line)}”) 

                break 

def main() -> None:

    threads = [

        Consumer(),

        Producer(),

    ]

    for thread in threads:    

Starts all the 
child threads

        thread.start() 

    for thread in threads:    
Waits for all the child 
threads to finish

        thread.join() 

if __name__ == “__main__”:

    main()

Here we create two threads: Producer and Consumer. Producer produces data 
and stores it in the shared memory; Consumer consumes the data stored in shared 
memory. Hence, they communicate with each other using a shared array. The output of 
the program is as follows:

The producer thread 
writes data to 
shared memory.

The consumer thread continuously 
reads data from shared memory and 
waits if the data is not available yet.
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Consumer: Data not available

Sleeping for 1 second before retrying 

Producer: Writing 0

Producer: Writing 1

Producer: Writing 2

Producer: Writing 3

Producer: Writing 4

Consumer: Read: 1

Consumer: Read: 2

Consumer: Read: 3

Consumer: Read: 4

Consumer: Read: 0

This sharing of memory is both a blessing and a curse for the developer.

Advantages

The blessing of the approach is the fact that it provides the fastest and least resource- 
intensive communication possible. Although the OS helps allocate the shared memory, it 
does not participate in communication between tasks. Thus, in this case, the OS is com-
pletely removed from the communication and all the overhead of working with it, result-
ing in higher speed and less data copying. 

Disadvantages

The “curse” of this approach is that it is not necessarily the safest communication 
between tasks. The OS no longer provides the interfaces and protection of the shared 
memory. For instance, two friends may want to drink the last bottle of beer. That’s a 
conflict (even war, sometimes). Similarly, tasks running the same program may want to 
read or update the same data structures. For that reason, using this approach is some-
times more error-prone, and developers have to redesign the code by protecting 
shared-memory objects (we talk more about that in Chapter 8).



 Types of communication 75

Another disadvantage of this approach is that it does not scale beyond one machine. 
Shared memory can be used only for local tasks. This creates problems in large distrib-
uted systems where data that needs to be processed can’t fit into one machine, but it’s a 
perfect fit for symmetric multiprocessing (SMP) architecture systems.

In an SMP system, all processes or threads on the various CPUs share a unique log-
ical address space mapped to physical memory. And that’s why the shared-memory 
approach is popular for SMP systems, especially using threads: they have been built 
around the shared-memory idea in mind from the beginning. However, in such sys-
tems, increasing the number of processors connected to a common system bus makes 
it a bottleneck (see Chapter 3). 

Message-passing IPC

Probably the most widely used type of IPC mechanism today (which is often supported 
by OSs) is message passing. In message-passing IPC, each task is identified by a unique 
name, and tasks interact by sending and receiving messages to and from named tasks. 
The OS establishes a communication channel and provides proper system calls for tasks 
to pass messages through this channel.

The advantage of this approach is that the OS manages the channel, providing easy-
to-use interfaces to send and receive data without conflicts. On the other hand, there is 
a huge communication cost. To transfer any piece of information between tasks, it must 
be copied from the task’s user space to the OS channel through system calls (as discussed 
in Chapter 3) and then copied back to the address space of the receiving task.

Message passing has another advantage: it can be easily scaled beyond one machine to 
distributed systems. But there’s more to it, so let’s move on for now.

NOTE Many programming languages choose to use only message- 
passing IPC. The Go language philosophy is to share memory through 
communication. Here’s the idea in a slogan from the Go language 
documentation: “Do not communicate by sharing memory; instead, share 
memory by communicating.” Another example is Erlang, where processes 
don’t share any data and communicate with each other exclusively by 
message passing.

There are a lot of technologies to implement the message-passing approach. We cover 
some of the most common ones in modern OSs—pipes, sockets, and message queues—
in the following sections.
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Pipes

This is probably the simplest form of IPC. A pipe is a simple, synchronized way of trans-
ferring information from one task to another. As the name implies, a pipe defines a one-
way flow of data between tasks—data is written to one end and read from the other. A 
pipe allows for data flow in one direction; when bidirectional communication is needed, 
two pipes must be created.

You can imagine a pipe in IPC as being like a water pipe. If you put a rubber duck into 
a stream, it will travel downstream to the end of the waterway. The writer end is the 
upstream location where you put a rubber duck into the pipe, and the reader end is where 
the rubber duck ends up downstream.

In the code, one section calls methods on the writer end to send data, while another sec-
tion reads incoming data. A pipe is a temporary object that can be used by only two tasks 
and will be closed if either the sender or receiver half is dropped.

NOTE Channels are a popular data type in Go and provide synchronization 
and communication between Go concurrency primitives, or goroutines. 
Channels can be thought of as pipes that are used by goroutines to 
communicate.

Pipes come in two kinds: unnamed and named. Unnamed pipes can only be used by 
related tasks (i.e., child–parent or sibling processes, or threads in the same process) 
because related tasks share file descriptors. Unnamed pipes disappear after the tasks 
finish using them.

Since a pipe is essentially a file descriptor (in UNIX systems), pipe operations are sim-
ilar to file operations but have no connection to the filesystem. When writers want to 
write data to a pipe, they use a write() OS system call on the pipe. To retrieve data 
from a pipe, the read() system call is used. read() handles pipes like it handles files, 
but it is blocked until there is no data to be read. Pipes may be implemented differently 
in different systems.

By creating a pipe in the main thread and then passing file descriptors to the child 
threads, we can pass data from one thread to another through the pipe. This is exactly 
how a standard pipe works. Let’s look at the code:
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# Chapter 5/pipe.py

from threading import Thread, current_thread

from multiprocessing import Pipe

from multiprocessing.connection import Connection

class Writer(Thread):

    def __init__(self, conn: Connection):

        super().__init__()

        self.conn = conn

        self.name = “Writer”

    def run(self) -> None:

        print(f”{current_thread().name}: Sending rubber duck...”)

        self.conn.send(“Rubber duck”)   

Writes a message 
into the pipeclass Reader(Thread):

    def __init__(self, conn: Connection):

        super().__init__()

        self.conn = conn

        self.name = “Reader”

    def run(self) -> None:

        print(f”{current_thread().name}: Reading...”)

        msg = self.conn.recv()   

Reads the message 
from the pipe

        print(f”{current_thread().name}: Received: {msg}”)

def main() -> None:

    reader_conn, writer_conn = Pipe()

    reader = Reader(reader_conn)

    writer = Writer(writer_conn)

    threads = [

        writer,

        reader

    ]

    for thread in threads:

        thread.start()

    for thread in threads:

        thread.join()

if __name__ == “__main__”:

    main()

Establishes an unnamed pipe 
for communication between 
two threads with two pipe 
connections for reading and 
writing
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We create an unnamed pipe with two threads. The writing thread writes a message to the 
reader through the pipe. Here is the output of the program:

Writer: Sending rubber duck...

Reader: Reading...

Reader: Received: Rubber duck

NOTE pipe() and fork() make up the famous functionality behind the 
pipe operator (|) in ls | more in the popular UNIX shell and command 
language Bash.

Named pipes allow the transfer of data between tasks according to the FIFO (first in, first 
out) principle, which means the request is processed in the order it arrives. Because of 
that, named pipes are often referred to as FIFOs. 

Unlike unnamed pipes, FIFOs are not temporary objects; they are entities in the 
filesystem and can be freely used by unrelated tasks that have appropriate permissions to 
access them. Using named pipes allows tasks to interact even if they don’t know which 
tasks are on the other end of the pipe, even over a network. Otherwise, FIFOs are treated 
exactly like unnamed pipes and use the same system calls.

Because of this unidirectional nature of pipes, probably the best use of pipes is to transfer 
data from producer programs to consumer programs. For other uses, they are rather 
limited, and other IPC methods often work better.

Message queues

Another popular message-passing IPC implementation is the message queue. Like named 
pipes, message queues keep data organized using the FIFO principle, which is why they 
have queue in the name; but they also support multiple tasks to write or read messages. 

Message queues provide a powerful means of decoupling tasks in a system, allowing 
producers and consumers to interact with the queue instead of directly with each other. 
That gives developers a lot of freedom to control execution. For example, workers can put 
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messages back in the message queue if they have not been processed for some reason. 
Here’s how message queues look in code:

# Chapter 5/message_queue.py

import time

from queue import Queue

from threading import Thread, current_thread

class Worker(Thread):

    def __init__(self, queue: Queue, id: int):

        super().__init__(name=str(id))

        self.queue = queue

    def run(self) -> None:

        while not self.queue.empty():

            item = self.queue.get() 

            print(f”Thread {current_thread().name}: “

                  f”processing item {item} from the queue”)

            time.sleep(2)

def main(thread_num: int) -> None:

    q = Queue() 

    for i in range(10): 

        q.put(i) 

    threads = []

    for i in range(thread_num):

        thread = Worker(q, i + 1)

        thread.start()

        threads.append(thread)

    for thread in threads:

        thread.join()

if __name__ == “__main__”:

    thread_num = 4

    main(thread_num)

Here we create a message queue and place 10 messages in it for our 4 children to process. 
Our threads process all the messages in the queue until it is empty. Note that the queue 
is not just a single thread interaction point but also holds the messages until they are 
processed—creating a loosely coupled system. The output of the program looks like this:

Gets the next item from the 
queue to be processed. This 
method blocks until an item  
is available in the queue.

Creates a queue with 
values put into it for 
processing in the threads.
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Thread 1 : processing item 0 from the queue

Thread 2 : processing item 1 from the queue

Thread 3 : processing item 2 from the queue

Thread 4 : processing item 3 from the queue

Thread 1 : processing item 4 from the queue

Thread 2 : processing item 5 from the queue

Thread 3 : processing item 6 from the queue

Thread 4 : processing item 7 from the queue

Thread 1 : processing item 8 from the queue

Thread 3 : processing item 9 from the queue

As we’ve seen, message queues are used to implement loosely coupled systems. They are 
used everywhere: in OSs to schedule processes and in routers as buffers to store packets 
before they are processed. Even cloud applications consisting of microservices use mes-
sage queues to communicate. Also, message queues are widely used for asynchronous 
processing. We get to the practical use of queues at the end of this chapter, but for now, 
let’s move on to a discussion of UDSs.

UDSs

Sockets can be used to communicate in a wide variety of domains, and in this chapter, we talk 
about UNIX domain sockets (UDSs) used between threads on the same system. We talk about 
network and network sockets, other common domain sockets, in Chapter 10.

We can create two-way, FIFO communications via sockets implementing message- 
passing IPC. In this IPC, one thread can write information to the socket, and a second 
thread can read information from the socket. A socket is an object that represents the end 
point of that connection. Threads from both ends have their own socket, which is con-
nected to another socket. So, to send information from one thread to another, we write it to 
the output stream of one socket and read it from the input stream of the other socket.

Speaking of sending messages between two entities, let’s take a moment to imagine 
sending a Christmas card to your mom. You need to write some sweet holiday wishes on 
the card and put your mom’s name and address on it. Then you need to drop it in your 
local mailbox. You’ve done your part. Now the postal service will do the rest: it will send 
the card to your mom’s local post office, and the mail carrier will deliver your card to 
your mom’s door and see the happy look on her face.
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In the case of a Christmas card, you first put the sender’s and recipient’s addresses on the 
card. With sockets, you have to establish a connection first, and then the message 
exchange starts. 

The Sender thread puts the information it wants to send in the message and sends it 
explicitly over a dedicated channel to the Receiver thread, and the Receiver thread 
then reads it. We need at least two primitives: send(message, destination) and 
receive(). The threads in this exchange can be executed either on the same machine 
or on different machines connected by a network.

Here’s the code:

# Chapter 5/sockets.py

import socket

import os.path

import time

from threading import Thread, current_thread

SOCK_FILE = “./mailbox”

BUFFER_SIZE = 1024 

class Sender(Thread):

    def run(self) -> None:

        self.name = “Sender”

        client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) 

        client.connect(SOCK_FILE) 

        messages = [“Hello”, “ “, “world!”]

        for msg in messages:                               

            print(f”{current_thread().name}: Send: ‘{msg}’”) 

            client.sendall(str.encode(msg))                 

        client.close()

In UNIX, everything is a file. This socket file will be 
used to facilitate communication between threads.

Buffer size for receiving data 
from the socket connection

Creates a new socket for 
the sender thread. AF_

UNIX (UNIX domain 
socket) and SOCK_

STREAM are constants 
that represent the socket 

family and socket type, 
respectively.

Connects the sender thread’s socket 
to the “channel”—a UNIX socket file

Sends a series of messages 
over the sender thread’s socket
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class Receiver(Thread):

    def run(self) -> None:

        self.name = “Receiver”

        server = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) 

        server.bind(SOCK_FILE) 

        server.listen() 

        print(f”{current_thread().name}: Listening to incoming messages...”)

        conn, addr = server.accept() 

        while True:      

            data = conn.recv(BUFFER_SIZE) 

            if not data:     

                break     

            message = data.decode()   

            print(f”{current_thread().name}: Received: ‘{message}’”) 

        server.close()  

def main() -> None:

    if os.path.exists(SOCK_FILE):

        os.remove(SOCK_FILE)

    receiver = Receiver()

    receiver.start()

    time.sleep(1)

    sender = Sender()

    sender.start()

    for thread in [receiver, sender]:

        thread.join()

    os.remove(SOCK_FILE)

if __name__ == “__main__”:

    main()

We create two threads, Sender and Receiver. Each has its own socket. The only dif-
ference between them is that Receiver is in listening mode, waiting for incoming 
senders to send their messages. Here is the output:

Creates a new socket for the receiver thread with 
the same configuration as the sender socket

Binds and starts the receiver thread’s 
socket listening for incoming connections. 

Accepts a connection on 
the receiver thread’s 
socket and returns a new 
connection and the 
address of the sender

Receives data from 
the connected sender 

socket until the 
connection is closed
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Receiver: Listening of incoming messages...

Sender: Send: ‘Hello’

Sender: Send: ‘ ‘

Receiver: Received: ‘Hello’

Receiver: Received: ‘ ‘

Sender: Send: ‘world!’

Receiver: Received: ‘world!’

This is probably the simplest and best-known way to implement IPC, but it is also costly 
because it requires serialization, which in turn requires the developer to think about what 
data needs to be transmitted. On the bright side, sockets are generally more flexible and 
can be extended to network sockets if needed with almost no changes, letting you easily 
scale your program to multiple machines. We talk more about that in part 3 of the book.

NOTE This is not a complete list of types of IPC, only the most popular and 
those we need later in the book. For example, signals are among the oldest 
methods of IPC; and there are unique things, such as mailslots,1 that are only 
available in Windows.

Having discussed IPC, we have covered the concurrency fundamentals. We are ready to 
start with our first concurrency pattern: the thread pool.

Thread pool pattern
Developing software using threads can be a daunting task. Not only are threads low-level 
concurrency constructs that require manual management, but the synchronization mech-
anisms typically employed with threads can complicate software design without necessar-
ily improving performance. Moreover, since the optimal number of threads for an 
application can vary dynamically based on the current system load and hardware config-
uration, creating a robust thread management solution is exceedingly challenging.

Despite the challenges, most concurrent applications actively use multiple threads. 
However, this does not mean threads are explicit programming language entities. 
Instead, the runtime environment can map other programming language concurrency 

1 Microsoft documentation, “Mailslots,” https://learn.microsoft.com/en-us/windows/win32/
ipc/mailslots.
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constructs to actual threads at runtime. One of the commonly implemented and widely 
used patterns in various frameworks and programming languages is the thread pool.

As the name implies, a thread pool is made by cre-
ating a small collection of long-running worker 
threads at program startup and then putting them 
into a pool (a container). When a task needs to be exe-
cuted, the pool takes one of the pre-created threads 
and executes it; the developer does not need to create 
them. Sending tasks to the thread pool is similar to 
adding them to the to-do list for worker threads.

Reusing threads with a thread pool eliminates the 
overhead associated with creating new threads and 
protects against the unexpected failure of the task, 
such as raising an exception, without affecting the 

worker thread. Reusing threads becomes a real advantage when the time required to 
perform a task is less than the time required to create a new thread.

NOTE The thread pool creates, manages, and schedules worker threads, 
which can become complex and costly tasks if not handled carefully. Thread 
pools come in different types, with different scheduling and execution 
techniques and either a fixed number of threads or the ability to dynamically 
change the size of the pool depending on the workload. 

Suppose we have a large set of tasks to process using multiple threads, such as cracking 
passwords, as described in Chapter 2. By dividing the possible passwords into smaller 
chunks and assigning them to separate threads, we can achieve concurrency in our pro-
cessing. In this scenario, we need a main thread that generates tasks for the worker 
threads running in the background.

To facilitate communication between the main thread and the worker threads run-
ning in the background, we need a storage mechanism that can act as a link between 
them. This storage should prioritize processing tasks in the order they are received. 
Moreover, any free worker thread should be able to pick up and process the next available 
task from this storage.

How do we build such communication between threads?
Message queues are a means of communication between threads within a pool. A 

queue logically consists of a list of tasks. Threads in the pool retrieve tasks from the mes-
sage queue and process them concurrently. 
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The implementation in different programming languages may differ. The following is an 
example of a thread pool implementation in Python:

# Chapter 5/thread_pool.py

import time

import queue

import typing as T

from threading import Thread, current_thread

Callback = T.Callable[..., None]

Task = T.Tuple[Callback, T.Any, T.Any]

TaskQueue = queue.Queue

class Worker(Thread):

    def __init__(self, tasks: queue.Queue[Task]):

        super().__init__()

        self.tasks = tasks

    def run(self) -> None:

        while True: 

            func, args, kargs = self.tasks.get() 

            try: 

                func(*args, **kargs) 

            except Exception as e: 

                print(e) 

            self.tasks.task_done() 

Worker thread gets a 
task from the queue, 

runs the function 
associated with the 

task, and marks the 
task as done when it’s 

finished. It does this 
indefinitely.
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class ThreadPool:

    def __init__(self, num_threads: int):

        self.tasks: TaskQueue = queue.Queue(num_threads) 

        self.num_threads = num_threads

        for _ in range(self.num_threads): 

            worker = Worker(self.tasks) 

            worker.setDaemon(True) 

            worker.start() 

    def submit(self, func: Callback, *args, **kargs) -> None:

        self.tasks.put((func, args, kargs))

    def wait_completion(self) -> None:

        self.tasks.join() 

def cpu_waster(i: int) -> None:

    name = current_thread().getName()

    print(f”{name} doing {i} work”)

    time.sleep(3)

def main() -> None:

    pool = ThreadPool(num_threads=5) 

    for i in range(20): 

        pool.submit(cpu_waster, i) 

    print(“All work requests sent”)

    pool.wait_completion()

    print(“All work completed”)

if __name__ == “__main__”:

    main()

When we create this thread pool, it automatically creates several threads and a message 
queue where incoming tasks are stored. Next, in the main thread, we add a lot of tasks 
for the pool to process and wait for them to finish.

When a new task arrives, an available thread wakes up, executes the task, and returns 
to the Ready state. This avoids the relatively costly creation and termination of a thread 
for each task in progress and takes thread management out of the developer’s control, 
passing it to a library or OS better suited to optimizing program execution. 

Stores the task submitted to 
the thread pool in the queue

Creates several worker 
threads and sets them 
to daemon mode so 
they will automatically 
exit when the main 
thread exits. Finally, 
starts the threads so 
they can begin 
executing tasks from 
the queue.

Blocks the calling 
thread until all 
tasks in the queue 
are completed

Creates a thread pool 
with five worker threads

Adds 20 tasks to 
the thread pool
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NOTE Check the file Chapter 5/library_thread_pool.py (available with the 
book’s downloadable files) for the Python library implementation of the 
thread pool pattern.

Thread pooling is a good default choice for most concurrent applications, but in some sce-
narios it makes sense to create and manage your threads instead of using a thread pool:

• You want to control various thread priorities.

• You have tasks that cause the thread to block for a long time. Most thread pool 
implementations have a maximum number of threads, so many blocked threads 
might prevent tasks from starting in the thread pool.

• You need a static identifier associated with the thread.

• You want to dedicate a whole thread to one specific task.

As promised, let’s dive into implementing communication concepts and summarize our 
knowledge of concurrent application execution along the way.

Cracking passwords, revisited
We have acquired some new knowledge, so let’s proceed with the unfinished implementa-
tion of the password-cracking program from Chapter 2 using pools and processes (there is 
a Python limitation on using threads,2 but it should not matter for other languages):

# Chapter 5/password_cracking_parallel.py

def crack_chunk(crypto_hash: str, length: int, chunk_start: int,

                chunk_end: int) -> T.Union[str, None]:

    print(f”Processing {chunk_start} to {chunk_end}”)

    (reformat)

    combinations = get_combinations(

        length=length, 

        min_number=chunk_ start,

        max_number=chunk_end

    for combination in combinations:

        if check_password(crypto_hash, combination):

            return combination  

    return        

Did not find the 
password in this chunk

2 Python documentation, “Thread State and the Global Interpreter Lock,” http://mng.bz/wvDB.

Found  
a password
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def crack_password_parallel(crypto_hash: str, length: int) -> None:

    num_cores = os.cpu_count() 

    print(“Processing number combinations concurrently”)

    start_time = time.perf_counter()

    with Pool() as pool: 

        arguments = ((crypto_hash, length, chunk_start, chunk_end) for

                     chunk_start, chunk_end in 

                     get_chunks(num_cores, length)) 

        results = pool.starmap(crack_chunk, arguments) 

        print(“Waiting for chunks to finish”)

        pool.close() 

        pool.join() 

    result = [res for res in results if res]

    print(f”PASSWORD CRACKED: {result[0]}”)

    process_time = time.perf_counter() - start_time

    print(f”PROCESS TIME: {process_time}”)

if __name__ == “__main__”:

    crypto_hash = \

        “e24df920078c3dd4e7e8d2442f00e5c9ab2a231bb3918d65cc50906e49ecaef4”

    length = 8

    crack_password_parallel(crypto_hash, length)

Here the main thread creates a number of worker threads equal to the number of avail-
able CPU cores using the thread pool pattern. Each worker thread does the same thing 
as in the original version from Chapter 2, and we process all of the password chunks 
concurrently. The output will look similar to this:

Processing number combinations concurrently

Chunk submitted checking 0 to 12499998

Chunk submitted checking 12499999 to 24999998

Chunk submitted checking 24999999 to 37499998

Chunk submitted checking 37499999 to 49999998

Chunk submitted checking 49999999 to 62499998

Chunk submitted checking 62499999 to 74999998

Chunk submitted checking 74999999 to 87499998

Chunk submitted checking 87499999 to 99999999

Waiting for chunks to finish

PASSWORD CRACKED: 87654321

PROCESS TIME: 17.183910416

Gets the number of 
available CPU cores 
on the system

Processes each chunk in a 
separate process concurrently

Closes the pool to 
indicate that no 
more tasks will be 
submitted to it

Waits for all submitted tasks 
to complete before continuing 
with the rest of the program
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We get more than a 3× speedup from our origi-
nal sequential implementation. Great job!

We can implement many things with 
parallel hardware, but sometimes we have to 
use only one core, so parallel hardware is a luxury. 
That is not a reason to give up concurrency, 
because this is where concurrency beats parallel-
ism. More in the next chapter. 

Recap
• The mechanism by which threads and processes synchronize themselves 

and exchange data is called interprocess communication (IPC). 

• Each IPC mechanism has advantages and disadvantages. Each is the optimal 
solution for a particular problem:

 – A shared-memory mechanism is used when threads or processes need to 
efficiently exchange large amounts of data but have a problem with 
synchronizing access to the data.

 – Pipes provide an efficient way to implement synchronous communication 
between producer–consumer processes. Named pipes provide a simple 
interface for transferring data between two processes, whether on the same 
computer or on a network. 

 – A message queue between processes or threads is a way of asynchronously 
exchanging data. Message queues are used to implement weakly coupled 
systems.

 – Sockets are a two-way communication channel that can use networking 
capabilities. Here, data communication takes place through the socket 
interface instead of the file interface. In most cases, sockets provide the best 
combination of performance, scalability, and ease of use.

• A thread pool is a collection of worker threads that efficiently execute incoming 
tasks on behalf of the program’s main thread. Worker threads in a thread pool 
are designed to be reused once the task is completed and protect against the 
unexpected failure of the task, such as raising an exception, without affecting the 
worker thread itself.





Have you ever seen a plate spinner in a circus juggle multiple plates that are 
spinning on sticks? They effortlessly keep all the plates spinning in perfect 
harmony. That’s the power of multitasking! Similarly, in concurrent pro-
gramming, we need to be able to juggle multiple tasks, ensuring that each 
task gets the required attention and resources. 

In Chapters 6 through 9, we show you how to apply this same concept to 
creating a Pac-Man-like game and many other real-world scenarios. We 
explore the intricacies of designing concurrent programs, including multi-
tasking, task decomposition, and the effect of granularity on performance.

But with great power comes great responsibility (I read that somewhere), 
and concurrency can lead to race conditions, deadlocks, and starvation. But 
fear not—we provide you with the tools to solve these problems, including 
synchronization techniques like mutual exclusion, semaphores, and atomic 
operations. Just like the musicians in an orchestra, the key to successful 
concurrency is coordination and synchronization. And we even tackle clas-
sic problems like the dining philosophers and learn a few well-known pat-
terns. By the end of this part of the book, you’ll be equipped with the 
knowledge to design and optimize concurrent programs that can handle 
any challenge thrown your way. 

Are you ready to spin some plates? Or maybe juggle a few tasks at once? 

Part 2  
The many tentacles of 

concurrency: Multitasking, 
decomposition, and 

synchronization
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Do you ever stop to marvel at the sheer multitasking ability of your com-
puter? It’s truly incredible how it can handle multiple applications running 
at the same time, all while you continue to work on a text editor without a 
hitch. It’s a feat that we often take for granted, but it’s a testament to the 
impressive capabilities of modern computing.

Have you ever wondered how your computer accomplishes all this? How 
does it manage to juggle so many tasks at once? Even more interestingly, 
what types of tasks are being handled, and how are they classified?

In this chapter, we take a deeper dive into the concept of concurrency 
and explore the fascinating world of multitasking. By introducing multi-
tasking into the runtime layer, we gain a better understanding of how our 

In this chapter

• You learn how to identify and analyze possible 

bottlenecks in your application

• You learn how to run multiple tasks concurrently  

in the absence of parallel hardware

• You learn about the preemptive multitasking 

technique: pros, cons, and using it to solve  

I/O-bound problems

6Multitasking
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machines can handle a variety of tasks simultaneously. But before we delve into the intri-
cacies of multitasking, we first take a closer look at the different types of tasks our com-
puters can handle.

CPU-bound and I/O-bound applications
Applications consist of numerical, arithmetic, and logical operations, which require 
intensive CPU work. They can also read from a keyboard, hard drive, or network card 
and produce output in the form of writing files, printing to “high-speed” printers, or 
sending signals to the display. These operations communicate with devices by sending 
and receiving signals. Most of the time, that does not require CPU as there is nothing to 
compute; we’re just waiting for the response from the device. Such operations are also 
known as input-output operations (I/O). Consequently, it does not always make sense to 
give some tasks the use of the CPU. First, we need to understand the type of load.

An application is considered bound by something when a required resource for its 
work is a bottleneck for achieving increased performance. There are two main types of 
operations: CPU-bound and I/O-bound.

CPU-bound

So far, we’ve mostly been talking about CPU-bound applications. An application is 
bound by the CPU if it would run faster if the CPU was faster—that is, it spends most of 
its time using the CPU to do some kind of computation.

Here are some examples of CPU-bound operations:

• Mathematical operations like addition, subtraction, division, and matrix 
multiplication
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• Encryption and decryption algorithms that involve a lot of computationally 
intensive operations, like prime factorization and computing cryptographic 
functions

• Image processing and video processing

• Executing algorithms like binary search and sorting

I/O-bound

An application is bound by I/O if it would run faster if the I/O subsystem were faster. The 
kind of I/O subsystem can vary, but you can associate it with reading from disk, getting 
user input, or waiting for a network response. An application that goes through a huge 
file looking for a search term can become I/O bound because reading a lot of data from 
the disk creates a bottleneck.

Idle sections in the illustration represent periods of time when a particular task is pend-
ing and thus cannot advance. A common reason is waiting for I/O to be performed. But 
to perform various I/O operations, the CPU often does nothing but wait for data to be 
transferred to or from an external device, and CPU time is expensive. Examples of I/O-
bound operations are as follows:

• Most graphical user interface (GUI) applications, even if they never read from or 
write to the disk, because they spend most of their time waiting on user 
interaction via the keyboard or mouse

• Processes that spend most of their time doing disk I/O or network I/O, like 
databases and web servers
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Identifying bottlenecks 

When determining our application’s bottleneck, we must think about which resource we 
need to improve so our application performs better. This directly relates to the connec-
tion between operations and the corresponding resources they rely on. Often, CPU and 
I/O operations are identified as the most important to address.

NOTE Of course, this isn’t just about I/O-only work and CPU-only work; 
we can also think about memory and cache work. But for the majority of 
developers and the purposes of this book, it is enough to consider the 
difference between CPU and I/O.

Imagine two programs. The first program performs the multiplication of two gigantic 
matrixes and returns the answer. The second program writes a huge amount of informa-
tion from the network to a file on a disk. It is clear that these programs will not be equally 
accelerated by faster CPU clock speed or an increased number of cores. What does it 
matter how many cores there are if most of the time they are waiting for the next batch 
of data to be transferred to disk? One core or a thousand, we will not get a performance 
increase with an I/O-bound load. But if we have a CPU-bound load, there is a chance to 
get a boost when we parallelize our program so it can utilize multiple cores. 

The need for multitasking
Applications naturally become more and more I/O-bound. This is because CPU speed 
has historically increased, allowing more instructions to be executed in a given time, 
while data-transfer speed has not increased much. Therefore, the limiting factor in pro-
grams is often I/O-bound operations that block the CPU. But they can be identified and 
executed in the background, and most modern runtime systems do this.

Imagine that your friend Alan finds an ancient arcade machine in his parents’ attic. It 
has an old single-core processor, a big pixel screen, and a joystick. He approaches you, his 
only developer friend, and asks you to implement a Pac-Man-like game for the machine.
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The game is interactive and needs the player’s input to move the character in the game. 
At the same time, the world inside the game is dynamic. Ghosts need to move at the same 
time the gamer controls the character. And the gamer should see how the world is chang-
ing as well as how their character is moving. 

Your first steps are to create game functionality divided among three functions:

• get_user_input()—Gets input from the controllers and saves it in the 
game’s internal state. It is an I/O-bound operation.

• compute_game_world()—Computes the game world according to the game 
rules, the player’s input, and the game’s internal state. It is a CPU-bound operation.
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• render_next_screen()—Gets the game’s internal state and renders the 
game world on the screen. It is an I/O-bound operation.

Given those three functions, you can see that you have a problem—many things should 
be happening simultaneously for the gamer, but you only have an old one-core CPU.

How can you solve this problem?
Let’s start by trying to create a parallel program using one of the OS abstractions. We 

utilize threads for this problem, so we have one process and three threads. Using threads 
is beneficial, as we need to share data between tasks, and easier, as they can share the 
same process address space. So, our program looks like the following:

# Chapter 6/arcade_machine.py 

import typing as T

from threading import Thread, Event

from pacman import get_user_input, compute_game_world, render_next_screen

processor_free = Event() 

processor_free.set() 

class Task(Thread):

    def __init__(self, func: T.Callable[..., None]):

        super().__init__()

        self.func = func

    def run(self) -> None:

        while True:

            processor_free.wait()  

            processor_free.clear() 

            self.func() 

def arcade_machine() -> None:

    get_user_input_task = Task(get_user_input) 

    compute_game_world_task = Task(compute_game_world) 

    render_next_screen_task = Task(render_next_screen) 

    get_user_input_task.start() 

    compute_game_world_task.start() 

    render_next_screen_task.start() 

if __name__ == “__main__”:

    arcade_machine()

Simulates one 
processor/thread 
environment

Defines and 
runs tasks in 
separate 
threads 
concurrently

Runs the function 
inside its own endless 
loop. The loop will run 
continuously until the 
program is stopped 
or the thread is 
terminated.
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Here, we initialize three threads, each corresponding to one of the three functions. Each 
function inside a thread runs in its own endless loop (assuming we don’t stop a thread 
after a single execution) so that our threads are always kept working as a gamer contin-
ues playing.

Unfortunately, if we start this program, it gets stuck on the first thread, asking for user 
input in the infinite loop, and does nothing else as our CPU has room for only one 
thread. So, we cannot utilize parallelism here, as it requires us to have the proper hard-
ware. Don’t worry. We can still utilize concurrency with multitasking! 

Before we apply multitasking to our arcade problem, we need to understand its funda-
mentals. Let’s put our problem to one side as we learn more about multitasking in the 
next section.

Multitasking from a bird’s-eye view 
In today’s world, multitasking is everywhere. We 
multitask as we listen to music while walking, take a 
call while cooking, or eat while reading a book.

Multitasking is the concept of performing multi-
ple tasks over a period of time by executing them 
concurrently. Multitasking can be compared to a 
plate spinner in a circus who juggles multiple plates 
that are spinning on sticks. The performer rushes 
from plate to plate, trying to keep them spinning so 
they won’t fall off the sticks.

In a true multitasking system, operations run in parallel—but parallel execution 
requires appropriate hardware support. However, the appearance of multitasking can be 
achieved even on older processors by using several tricks.
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Preemptive multitasking 

The main task of the OS is resource management, and one of the most important 
resources for it to manage is the CPU. The OS must be able to allow every program to be 
executed on the CPU. This means it should be able to run a task for a while but then park 
it and allow another task to run. The problem is that most applications are not written to 
be attentive to other running applications. So, the OS needs a way to preemptively sus-
pend the execution of an application.

The idea behind preemptive multitasking is to define a period of time a single task is 
allowed to run. This period is also known as a time slice because the OS tries to guarantee 
a slice of CPU time for each running task. And that’s why this scheduling technique is 
called a time-sharing policy.1 The CPU will execute the task in the Ready state during 
this time slice if it does not perform any blocking operations.

When the time slice expires, the scheduler interrupts the task (preempts it) and allows 
another task to run in its place while the first task waits its turn again. An interrupt is a 
signal to the CPU to stop the task and resume it later. There are three types of interrupts: 
hardware interrupts with a special interrupt controller (e.g., pressing a keyboard button 
or completing a write to a file); software interrupts (e.g., system calls) caused by the 
application itself; and errors and timer interrupts.

Imagine that a processor allocates a small amount of time to each running task and 
then quickly switches between them, allowing each task to execute in an interleaved 
fashion. By switching quickly and passing control to the tasks in the queue, the OS cre-
ates the illusion of multitasking, although only one task is executing at any given time. 
The following diagram shows the progress of the three tasks as a function of time. Time 
moves from left to right, and the lines indicate which task is in progress at any given 
moment. The illustration shows the perceived simultaneous execution model. 

1  If you’re interested in learning more, here is a good video on the topic: “1963 Timesharing: 
A Solution to Computer Bottlenecks,” https://youtu.be/Q07PhW5sCEk.

https://youtu.be/Q07PhW5sCEk
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Most OSs developed in the last decade provide preemptive multitasking (we contrast it 
with cooperative multitasking in Chapter 12). If you work on Linux, macOS, or Windows, 
you work on an OS with preemptive multitasking. To better understand how multitask-
ing can be implemented, let’s go back to our arcade machine example.

Arcade machine with preemptive multitasking

We have two I/O-bound operations that are waiting for an event to occur and hence are 
blocking the CPU. For example, the get_user_input_task thread is waiting for the 
gamer to press a button on the controller. 

We have an old one-core CPU on the arcade machine, but it’s still very fast compared 
to human reflexes. It takes what would seem like an unimaginable amount of time to the 
CPU for a person to move their finger over the button and press it. The fastest possible 
conscious human reactions take around 0.15 seconds; if we have a 2 GHz processor, it 
can execute 300 million cycles in the same amount of time—roughly the number of 
instructions. While we wait for human input (the gamer pressing the button), we waste 
CPU computation resources as the CPU core does nothing. We can utilize this unoccu-
pied CPU time by passing control to computational tasks during idle time.

Essentially, we need to implement part of the OS. This can be done via preemptive 
multitasking—giving each thread a CPU time to run and then passing the processor to 
the next thread. We can use a simple time-sharing policy and divide all available CPU 
time into equal time slices.

This is where the timer comes to the rescue. Timers tick at regular intervals and can 
be set to interrupt after a certain number of ticks. This interrupt pauses the current 
thread, allowing us to let another thread use the processor. So, the diagram of our pro-
gram looks like this.

Implementing the time-sharing policy, runtime system divides the processor time between 
the threads into time slices to give the impression that they are running concurrently.
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In the code, it looks like the following:

# Chapter 6/arcade_machine_multitasking.py

import typing as T

from threading import Thread, Timer, Event

from pacman import get_user_input, compute_game_world, render_next_

screen

processor_free = Event()

processor_free.set()

TIME_SLICE = 0.5      

Defines the 
processor time slice

class Task(Thread):

    def __init__(self, func: T.Callable[..., None]):

        super().__init__()

        self.func = func

    def run(self) -> None:

        while True:

            processor_free.wait()

            processor_free.clear()

            self.func()

class InterruptService(Timer):

    def __init__(self):

        super().__init__(TIME_SLICE, lambda: None)

    def run(self):

        while not self.finished.wait(self.interval): 

            print(“Tick!”) 

            processor_free.set() 

Sets a timer to 
indicate that the 
processor is free 
(the timer interrupts 
the processor)
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def arcade_machine() -> None:

    get_user_input_task = Task(get_user_input)

    compute_game_world_task = Task(compute_game_world)

    render_next_screen_task = Task(render_next_screen)

    InterruptService().start()

    get_user_input_task.start()

    compute_game_world_task.start()

    render_next_screen_task.start()

if __name__ == “__main__”:

    arcade_machine()

We implement multitasking by putting threads into one infinite control loop where we 
can, in an interleaved manner, provide each thread with a CPU time slice. If the inter-
leaving happens fast enough (say, 10 milliseconds), gamers get the impression of simul-
taneous execution. It seems to the player that all of the game’s attention is devoted to 
them, when in fact the processor and the computer system as a whole may be working on 
a completely different task at the moment. The gamer gets the impression of parallel 
execution because of the extremely fast switching between threads.

So, physically, we still have serial execution of tasks because we have limited process-
ing resources. But, conceptually, all three of our threads are in progress, making them 
run concurrently.

Concurrent computations have overlapping lifetimes. As we’ve seen, with the proper 
hardware, we can achieve true parallelism with physically simultaneous task execution, 
while multitasking helps us abstract away overlapping execution to the runtime system. 
Thus, true parallelism is essentially an implementation detail of the execution, while 
multitasking is part of the computational model.

There is one pitfall here that we have missed, so let’s step back a bit.

Context switching

The execution context of a task contains the code 
that’s currently running (the instruction pointer) and 
everything that aids in its execution on a CPU core 
(CPU flags, key registers, variables, open files, con-
nections, etc.); it must be loaded back into the proces-
sor before the code resumes execution. Consequently, context switching is a physical act 
of swapping from one task’s context to another without losing the data so that it can be 
recovered to the same moment when it was switched. The task selected from the Ready 
queue moves into a Running state.

Imagine that you’re having an engaging conversation with a friend, but then your 
phone starts ringing, and you get distracted. You say, “Wait a minute” to your friend, and 
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pick up the phone. Now you enter a new conversation—a new context. When it’s clear to 
you who’s calling and what they want, you can focus on their request. After the phone 
call ends, you return to the initial conversation. Sometimes you forget the context where 
you left off, but once your friend reminds you of what you were talking about, you can 
continue. It happens quickly but not instantly.

Like you, the processor needs to find the context where the task was and reconstruct it. 
From the point of view of the task, everything around it is in the same state as before. It 
doesn’t matter whether the task started just now or 25 minutes ago. Context switching is 
a procedure performed by the OS, and it’s one of the key mechanisms that provide the 
OS with a multitasking feature.

Context switches are considered costly because they require system resources. 
Switching from one task to another requires certain actions. First, the context of a run-
ning task must be saved somewhere, and then the new task starts. If the new task was 
previously in progress, it also has a stored context, which must be preloaded before it can 
continue execution. When the new task completes, the scheduler saves its final context 
and restores the context of the preempted task. The preempted task resumes execution as 
if nothing happened (except the time shift).
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The overhead associated with saving and restoring state when switching contexts nega-
tively affects program performance as the application loses the ability to execute instruc-
tions when switching contexts. It all depends on the type of operations your program is 
performing.

NOTE The amount of latency incurred during context switching depends 
on various factors, but let’s take a reasonable ~800 to ~1300 nanoseconds per 
context switch (the numbers I get using LMbench (https://lmbench.
sourceforge.net) on my laptop). Given that the hardware should be able to 
reasonably execute, on average, 12 instructions per nanosecond per core, 
context switching could cost roughly ~9,000 to ~15,000 executed instructions.

Be careful when using multiple tasks in an application, because system performance can 
degrade if too many tasks are running. The system will waste a lot of usable time in the 
context-switching loop.

Now that we understand what multitasking is, let’s integrate it into the runtime envi-
ronment and combine all the other concurrency concepts.

Multitasking environments
In the early days of computers, people didn’t think of doing more than one task at the 
same time on a single machine because the OS and the applications were not designed 
for multitasking. We had to exit one application and open a new one every time. 

Today, the ability to perform multiple tasks concurrently has become one of the most 
important requirements for runtime systems. This requirement is addressed by multitask-
ing. Although real parallel processing is not achieved, and some overhead is associated 

https://lmbench.sourceforge.net
https://lmbench.sourceforge.net
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with switching between tasks, interleaved execution provides significant advantages in 
processing efficiency and program structuring.

For the user, the advantage of a multitasking system is the ability to have multiple 
applications running at the same time. For example, a user can edit a document in one 
application while watching a movie in another.

For the developer, the advantage of multitasking is the ability to create applications 
using more than one process and to create processes using more than one execution 
thread. For example, a process may have a user interface thread that handles user inter-
action (keyboard and mouse input) and worker threads that perform computational 
tasks while the user interface thread waits for user input. 

Delegating the scheduling and coordination of tasks to a runtime system simplifies 
the development process while allowing flexibility to adapt transparently to different 
hardware or software architectures. Using different runtime environments (computer 
OS, Internet of Things [IoT] runtime environment, manufacturing OS, etc.) allows 
developers to optimize for different purposes. For example, minimizing power con-
sumption may require a different scheduler than maximizing throughput.

NOTE In the 1960s and 1970s, the development of multitasking OSs such as 
IBM’s OS/360 and UNIX allowed multiple programs to run on a single 
computer but required more memory than was physically available. To solve 
this problem, virtual memory was developed, a technique that temporarily 
transfers data from RAM to disk storage, allowing computers to use more 
memory than they have. This development enabled computers to run more 
programs simultaneously, and virtual memory remains an essential 
component of modern OSs.

Multitasking OSs

Multitasking in multiprocessor environments can be supplemented by distributing dif-
ferent tasks to the available CPU cores. The CPU does not know anything about pro-
cesses or threads. The CPU’s job is just to execute machine instructions. Thus, from the 
CPU’s point of view, there is only one execution thread: serial execution of all incoming 
machine instructions from the OS. To make that happen, the OS uses thread and process 
abstractions. And the task of the OS when there are multiple running threads for a single 
processor core is to somehow juggle the threads, simulating parallel execution for the 
user but making them run concurrently.

Multitasking is a runtime system–level feature; there is no concept of multitasking at the 
hardware level. However, implementing multitasking is not without challenges and often 
requires the runtime system to have strong task isolation and an efficient task scheduler.
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Task isolation

By the definition of multitasking, there are multiple tasks in the OS. You may have 
already guessed that we will now refer to processes and thread abstractions provided by 
the OS, but if you are creating a runtime system, things can be different. 

There are two ways to create multiple tasks: 

• As a single process with multiple threads

• As multiple processes, each having one or more threads

As previously discussed, each option has its pros and cons, but they all provide, to a 
greater or lesser extent, isolation of the execution of tasks. The OS, in turn, takes care of 
how these abstractions are mapped to the physical threads of the computer system and 
how they are executed on the hardware. 

The OS abstracts from how the hardware works, and even if the system has only one 
core, the OS gives the developer the illusion that it doesn’t. So even if the system cannot 
use parallelism, developers can still use concurrent programming and take advantage of 
the OS’s multitasking. A program divided in this way can be written as if the processor 
is at its full disposal.

It is generally more efficient to implement multitasking by creating a single multi-
threaded process rather than multiple processes, for the following reasons:

• The system can perform context switching faster for threads than for processes 
because a process has more overhead than a thread (a process context is larger 
than a thread context).

• All process threads share address space and can access global process variables, 
simplifying communication between threads. 

Task scheduling

The scheduler is the core of multitasking OSs. From all the tasks in the Ready state, the 
scheduler chooses which one should be executed next.

The idea behind scheduling execution is simple. Something should always be run-
ning, to make better use of processor time. If there are more tasks than processors in the 
system, which is common, some tasks do not run at all times but wait in the Ready state. 
The choice of which task should be executed at the next moment is the fundamental 
decision of the scheduler from the information about the tasks that are ready to run.

Since the scheduler allocates a limited resource (CPU time), the logic it follows is 
based on balancing conflicting goals and priorities. Typical goals are to maximize 
throughput (number of tasks a system can handle over a period of time) or fairness (pri-
oritizing or aligning computation) or minimize response time (time to complete the 
action) or delay (making it react faster).
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The scheduler can forcefully take control away from a task (e.g., by a timer or when a 
task with a higher priority emerges) or wait until the task gives control explicitly (by 
calling a system procedure) or implicitly (when it finishes) to the scheduler. This means 
the scheduler is unpredictable regarding what task will be selected for execution at any 
given time. Thus, the developer should never write a program based on previously seen 
behavior, because it is not guaranteed to happen every time. We must control the syn-
chronization and coordination of tasks to achieve determinism in our application. We 
talk about this in the following chapters.

Most importantly, the scheduler opens the door to implementing new methods of 
improving system performance without changing the program. Of course, introducing 
an additional layer between the application and the OS increases execution overhead. 
For this approach to work, the performance benefits that the runtime environment can 
provide must exceed the runtime management overhead. 

NOTE We focused on the OS in this chapter, but other runtime environments 
implement the same multitasking concepts. For example, multitasking is 
used with await in languages like JavaScript and Python that feature a 
single-threaded event loop in their runtime. V8, one of the most efficient 
JavaScript execution engines on the market, and the Go programming 
language, known for its scalability and small memory footprint, do their own 
multitasking, lying on top of the OS (at the user level). We touch on this topic 
in Chapter 12 when we talk about cooperative multitasking and asynchronous 
communication.

Recap
• There are two types of bottlenecks in programs based on the resources used the 

most—CPU-bound and I/O-bound:

 – CPU-bound operations mostly require processor resources to finish their 
computation. In this case, the limitation is the speed at which the system can 
compute something.

 – I/O-bound operations mostly do I/O and don’t depend on computation 
resources, such as waiting for a disk operation to finish or an external service 
to answer a request. In this case, the limit is the speed of the hardware, such as 
how fast a disk can read data or how fast a network can transmit it.

• Context switching is a physical act of swapping from one task’s context to another 
so that the task can later be recovered to the same moment when it was switched. 
Context switching is a procedure handled by the OS, and it’s one of the key 
mechanisms that provides multitasking to the OS.
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 Context switching is not free, so be careful when using multiple tasks in an 
application. System performance can degrade if too many tasks are running—the 
system will waste a lot of usable time in the context-switching loop.

	The ability to perform multiple tasks simultaneously is critical for runtime 
systems. It is solved by multitasking. This mechanism controls the interleaving 
and alternating execution of tasks. By constantly switching tasks, the system can 
maintain the illusion of simultaneous execution of tasks, although in fact the 
tasks are not executed in parallel.

	Multitasking is the concept of performing multiple tasks over a period of time by 
executing them concurrently. Multitasking is a runtime system–level feature; 
there is no concept of multitasking at the hardware level.

 – In preemptive multitasking, the scheduler prioritizes tasks and forces the tasks 
to pass control to other tasks.

 – It is generally more efficient to implement multitasking by creating a single 
multithreaded process rather than multiple processes.

 – It is important for the runtime system scheduler to distinguish between 
I/O-bound and CPU-bound tasks to ensure optimal use of system resources.
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Previously, we learned that concurrent programming implies decomposing 
a problem into independent units of concurrency or tasks. Deciding how to 
decompose a problem into concurrent tasks is one of the more difficult but 
important steps. Automatically decomposing programs using a concurrent 
programming approach is a difficult research topic. Thus, in most cases, 
decomposition falls on the shoulders of the developers.

In this chapter

• You learn decomposition techniques to efficiently 

break down programming problems into separate, 

independent tasks

• You learn popular concurrency patterns for  

creating concurrent applications: the pipeline,  

map, fork/join, and map/reduce patterns

• You learn how to choose the granularity of your 

applications

• You learn how to use agglomeration to reduce 

communication overhead and increase system 

performance

7Decomposition
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In this chapter, we discuss methods and popular programming patterns for designing 
concurrent applications. We talk about the application layer of concurrency, where we 
focus on where we can find independence of tasks and how to structure and design a 
program rather than how it will be executed (although we also touch on this part).

Dependency analysis
Decomposing a problem into concurrent tasks is one of the first necessary steps in writ-
ing concurrent applications and is the key to concurrent programming. When you decide 
to decompose a programming problem into tasks, don’t forget that tasks can have depen-
dencies on other tasks. Therefore, the first step to decompose the problem is to find the 
dependencies of all its constituent tasks and identify those that are independent. One 
method to help model how the tasks in a program relate to each other is to build a task 
dependency graph.

Dependency graphs help describe relationships between tasks. Consider the steps for 
cooking a simple chicken soup. To make chicken soup, you need to boil the chicken to 
make broth, remove the bones, chop carrots, chop celery, chop onions, mix these ingre-
dients into the soup, and cook until the chicken is tender. You can’t start to simmer the 
soup until you’ve done all of the preceding tasks. Each step represents a task, and going 
backward from the result through each task dependency, we can build a dependency 
graph that looks like this.
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There are several ways to draw these types of computational graphs, but their general 
purpose is to provide an abstract representation of the program. They help visualize 
relationships and dependencies between tasks. Each node represents a task, and edges 
represent dependencies.

Dependency graphs can also be used to get an idea of how concurrent a program can 
be. The fact that there are no direct edges between the tasks of making broth and chop-
ping vegetables indicates that concurrency is possible at this point. Thus, if this program 
could be implemented using threads, we would be able to create four separate threads: 
one for making broth and three others for chopping vegetables. All of them can be exe-
cuted simultaneously. The same concept is used in runtime systems when scheduling 
individual tasks.

Building a dependency graph is the first step toward program or system design. It 
helps to identify portions of work that can be performed concurrently. For now, we are 
ignoring problems of practical implementation, such as the number of processors or 
cores that can be used; all our attention is focused on the possible concurrency of the 
original problem. Having said that about the dependency graph, let’s look at it from dif-
ferent angles. 

The two types of dependencies in code are control dependency and data dependency. 
The corresponding ways of dividing a problem into smaller tasks are task decomposition 
and data decomposition.

Task decomposition
Task decomposition answers the question, “How can a problem be decomposed into 
independent functionality that can be executed concurrently?” or, to put it in plain 
English, “How can we split a problem into a bunch of tasks that we can perform all 
at once?”

Let’s imagine that there has been a major snowfall. You want to clear the area 
around the house by shoveling snow and scattering salt. Your friend comes over to 
help you finish the job faster, but you have only one shovel. So while one shovels, the 
other waits to take a turn. Remember, although this process makes sense, having 
only one resource (the shovel) does not speed up the work—it only slows it down. 
Overhead from context switching makes this process inefficient as it constantly 
interrupts the shoveling process.
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Having the same goal of clearing the area around the house, you decide to give your 
friend another subtask. While you clear the snow with your only shovel, your friend 
scatters salt. By eliminating the wait for the shovel, you make the job more efficient. This 
is essentially what task decomposition (also known as task parallelism) gives you.

This is an example of breaking down the problem into tasks by functionality. But task 
decomposition is often far from obvious: it’s complex and very subjective.
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Task decomposition implies the decomposition of the application into functionally 
independent tasks based on application functionality. Such decomposition is possible 
when the problem to be solved naturally consists of different types of tasks, each of which 
can be solved independently.

For example, an email management application would have a lot of functional require-
ments: standard features should include a user interface, a way to reliably receive new 
emails, and the ability for the user to write, send, and search through emails.

The tasks of finding emails and the UI that lists those emails depend on the same data 
but are completely independent of each other, so they can be split into two tasks and 
executed independently. The same applies to sending and receiving emails. For example, 
we can use different processors, each working with the same data but doing their tasks 
concurrently.

As we have seen, the functionality of the different tasks in task decomposition is 
diverse, with a wide range of operations used. Therefore it can only be used on multiple 
instruction, multiple data (MIMD) and multiple instruction, single data (MISD) 
systems.
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Task decomposition: Pipeline pattern
The most common pattern in task decomposition is so-called pipeline processing. The 
essence of pipeline processing is to decompose the algorithm into several separate con-
secutive steps. Pipeline steps can then be distributed among the different cores. Each 
core is like one worker on an assembly line; having completed its work, it passes the 
result to the next core while accepting a new portion of data. Hence, cores can execute 
multiple chunks of data simultaneously, starting new computations while others are 
still running.

NOTE Remember how we talked about the infinite CPU execution cycle? 
The execution of a single instruction includes passing through the steps of 
fetching instructions, decoding, executing, and storing the results. In modern 
processors, stages are designed so that instructions can be executed using 
pipeline processing at such a low level.

In Chapter 2, we did laundry in a hurry. Let’s bring that example closer to reality. In addi-
tion to washing the laundry, which takes a decent amount of time, you need to dry the 
laundry and then fold it—you don’t want to wear crumpled laundry to Hawaii, do you?

If you’re not using pipeline processing, washing, drying, and folding four loads of 
laundry with one washer and dryer looks like this.
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With this approach, your resources (washer, dryer) are not fully utilized—there are times 
when they are idle while some other action is performed.

Using pipeline processing ensures that you are constantly using the washer and dryer 
without wasting any time—you divide the three steps of the laundry process into three 
different workers: washer, dryer, and folder (the latter is probably you). Each worker has 
a lock on a common resource. 

The first batch of laundry is ready to be washed and placed in the washer. When the 
laundry is washed and removed from the washer, it is transferred to the next stage of 
your pipeline, the dryer. While the first batch of laundry is drying in the dryer, the sec-
ond batch can begin washing because the washing machine is idle.

Concurrency occurs when a second load going through the pipeline ends up executing at 
the same time as the first load. The coincidence of previously separated operations defi-
nitely has a positive effect on processing speed.
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NOTE One of the most popular patterns in the big data world is ETL 
(extract, transform, load)—a popular paradigm for collecting and 
processing data from various sources that implements a pipeline pattern. 
Using ETL tools, we extract data from the source(s) and transform it into 
structured information, which we load into the target data warehouse or 
other target system.

To implement this type of functionality in our code, we need two things: a way to create 
independently running tasks and a way for tasks to communicate with each other. This 
is where threads and queues come to the rescue. Let’s see what the example looks like in 
this code:

# Chapter 7/pipeline.py

import time

from queue import Queue

from threading import Thread

Washload = str

class Washer(Thread):

    def __init__(self, in_queue: Queue[Washload], out_queue: 

Queue[Washload]):

        super().__init__()

        self.in_queue = in_queue

        self.out_queue = out_queue

    def run(self) -> None:

        while True:

            washload = self.in_queue.get() 

            print(f”Washer: washing {washload}...”)

            time.sleep(4) 

            self.out_queue.put(f’{washload}’) 

            self.in_queue.task_done()

class Dryer(Thread):

    def __init__(self, in_queue: Queue[Washload], out_queue: 

Queue[Washload]):

        super().__init__()

        self.in_queue = in_queue

        self.out_queue = out_queue

Gets the washload from 
the previous stage

Simulates actual work

Sends the washload 
to the next stage
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    def run(self) -> None:

        while True:

            washload = self.in_queue.get() 

            print(f”Dryer: drying {washload}...”)

            time.sleep(2) 

            self.out_queue.put(f’{washload}’) 

            self.in_queue.task_done()

class Folder(Thread):

    def __init__(self, in_queue: Queue[Washload]):

        super().__init__()

        self.in_queue = in_queue

    def run(self) -> None:

        while True:

            washload = self.in_queue.get() 

            print(f”Folder: folding {washload}...”)

            time.sleep(1) 

            print(f”Folder: {washload} done!”)

            self.in_queue.task_done() 

class Pipeline:

    def assemble_laundry_for_washing(self) -> Queue[Washload]:

        washload_count = 8

        washloads_in: Queue[Washload] = Queue(washload_count)

        for washload_num in range(washload_count):

            washloads_in.put(f’Washload #{washload_num}’)

        return washloads_in

    def run_concurrently(self) -> None:

        to_be_washed = self.assemble_laundry_for_washing()

        to_be_dried: Queue[Washload] = Queue()

        to_be_folded: Queue[Washload] = Queue()

        Washer(to_be_washed, to_be_dried).start() 

        Dryer(to_be_dried, to_be_folded).start()

        Folder(to_be_folded).start() 

Gets the washload from 
the previous stage

Simulates actual work

Sends the washload 
to the next stage

Gets the washload from 
the previous stage

Simulates actual work

Sends the washload 
to the next stage

Assembles a 
queue of laundry 
loads to be 
washed and 
starts the 
threads in the 
correct order, 
linked by the 
queues
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        to_be_washed.join()        

Waits for all the washloads in 
the queue to be processed

        to_be_dried.join()

        to_be_folded.join()

        print(“All done!”)

if __name__ == “__main__”:

    pipeline = Pipeline()

    pipeline.run_concurrently()

We implement three main classes: Washer, Dryer, and Folder. In this program, each 
of our functions runs on separate threads concurrently. The output looks like this:

Washer: washing Washload #0...

Washer: washing Washload #1...

Dryer: drying Washload #0...

Folder: folding Washload #0...

Folder: Washload #0 done!

Washer: washing Washload #2...

Dryer: drying Washload #1...

Folder: folding Washload #1...

Folder: Washload #1 done!

Washer: washing Washload #3...

Dryer: drying Washload #2...

Folder: folding Washload #2...

Folder: Washload #2 done!

Dryer: drying Washload #3...

Folder: folding Washload #3...

Folder: Washload #3 done!

All done!

Since more loads can be washed at the same time, a pipeline pattern provides more effi-
ciency than washing one load at a time. Suppose it takes three steps to wash the clothes, 
and these steps take 20, 10, and 5 minutes, respectively. Then if all three steps were per-
formed in sequence, you would complete one load of laundry every 35 minutes.

Using a pipeline pattern, you can complete the first load in 35 minutes and every sub-
sequent load in 20 minutes because as soon as the first load finishes washing, the second 
load goes into the washing phase while the first load dries. Thus, the first load leaves the 
pipeline 35 minutes after the start of washing, the second load after 55 minutes, the third 
load after 75 minutes, and so on.
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It would seem that pipeline processing could be successfully replaced by simple parallel-
ism. But even in our example, to maintain parallelism, you would need to own four 
washers and four dryers. I would say this is impossible, if only because of the cost of all 
that equipment and available space.

The pipeline allows us to limit the number of threads, such as in the thread pool, 
needed for a particular pipeline step if there are a limited number of shared resources, 
rather than wasting threads that would otherwise be left idle. This is why pipelining is 
most useful when the number of shared resources is limited.

NOTE For example, filesystems can usually handle a limited number of 
concurrent read/write requests before they become overloaded. This puts an 
upper bound on the number of threads that give a concurrency benefit to 
this step.

Pipeline processing is often combined with other decomposition approaches, such as 
data decomposition. Speaking of which . . .

Data decomposition
Another commonly used concurrent programming model, data decomposition, allows 
developers to exploit the concurrency that occurs when the same operation is applied to 
multiple elements of a collection, such as multiplying all the elements of an array by 2 or 
increasing the taxes of all citizens with salaries greater than a tax bracket. Each task per-
forms the same set of instructions but with its own chunk of data. 

Therefore, data decomposition answers the question, “How do you decompose task 
data into chunks that can be processed independently of each other?” Thus, data decom-
position is based on the data, not the type of task.
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Let’s go back to our shovel problem. You have only one shovel, and the goal is to clear 
the snow from the area around the house. But if you have not one but two shovels, you 
can divide the area (data) into two zones (chunks of data) and clean them in parallel, 
using the independence of operations on the different data.

Data decomposition is achieved by dividing the data into chunks. Since each operation 
on each chunk of data can be treated as an independent task, the resulting concurrent 
program consists of a sequence of such operations. We already used data decomposition 
in Chapter 3 in the password-cracking example. The possible passwords (data) were 
divided into independent groups (parts of the task), which were evenly processed on 
different computing resources.
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NOTE Although in this chapter we talk about concurrency at the application 
layer, data decomposition depends more on the actual parallelism at the 
hardware layer because without it, there is little point in using this method. 

Data decomposition can be achieved in a distributed system by dividing the work 
between several computers or in one computer between different processor cores. 
Regardless of the amount of input data coming in, we can always horizontally scale 
resources to increase system performance as the specifically distributed system performs 
the same steps on all available computing resources simultaneously. If this sounds famil-
iar, you are right. It is similar to the single instruction, multiple data (SIMD) architec-
ture, and this type of architecture is best suited for this category of tasks.

Loop-level parallelism

The main candidate for using data decomposition is a program that has an operation 
that can be executed independently for each chunk of data. In general, loops in any form 
(for loop, while loop, and for-each loop) often fit this category perfectly, and that’s 
why it’s also referred to as loop-level parallelism. Loop-level parallelism is an approach 
often used to extract concurrent tasks from loops. It can even be used automatically by 
some compilers that can automatically translate sequential parts of a program into 
semantically equivalent concurrent code.

Imagine that you have the task of creating an application that searches a computer for 
files containing some search term. The user enters a directory path and a text string to 
search, and the program outputs the names of the files containing the search term.

How would you implement such functionality?
If we implement the program in a simple sequential form without using concurrency, 

it is a simple for loop:

# Chapter 7/find_files/find_files_sequential.py 

import os

import time

import typing as T

def search_file(file_location: str, search_string: str) -> bool:

    with open(file_location, “r”, encoding=”utf8”) as file:

        return search_string in file.read()

def search_files_sequentially(file_locations: T.List[str],

                              search_string: str) -> None:

        result = search_file(file_name, search_string)

        if result:

            print(f”Found word in file: {̀file_name}̀ ”)
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if __name__ == “__main__”:

    file_locations = list( 

        glob.glob(f”{os.path.abspath(os.getcwd())}/books/*.txt”)) 

    search_string = input(“What word are you trying to find?: “) 

    start_time = time.perf_counter()

    search_files_sequentially(file_locations, search_string)

    process_time = time.perf_counter() - start_time

    print(f”PROCESS TIME: {process_time}”)

To use this script, enter the directory to search for files when prompted and the word 
you’re searching for. The script will search for the word in all files in the specified direc-
tory and print the name of any file that contains the word. Here is some sample output:

What word are you trying to find?: brillig

Found string in file: `Through the Looking-Glass.txt̀

PROCESS TIME: 0.75120013574

Looking at this code, we see that in the for loop, we do the same actions on different 
data (files) at each iteration independently of each other—we don’t need to finish pro-
cessing file N to process file N + 1. So why can’t we separate these chunks of data and 
start processing them in multiple threads instead? Of course, we can:

# Chapter 7/find_files/find_files_concurrent.py 

import os

import time

import typing as T

from multiprocessing.pool import ThreadPool

def search_file(file_location: str, search_string: str) -> bool:

    with open(file_location, “r”, encoding=”utf8”) as file:

        return search_string in file.read()

def search_files_concurrently(file_locations: T.List[str],

                              search_string: str) -> None:

    with ThreadPool() as pool: 

        results = pool.starmap(search_file, 

                               ((file_location, search_string) for 

                                file_location in file_locations)) 

Creates a list of file 
locations to search

Gets the search 
term from the user

Searches for the 
same word in each 

thread concurrently
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        for result, file_name in zip(results, file_locations):

            if result:

                print(f”Found string in file: {̀file_name}̀ ”)

if __name__ == “__main__”:

    file_locations = list(

        glob.glob(f”{os.path.abspath(os.getcwd())}/books/*.txt”))

    search_string = input(“What word are you trying to find?: “)

    start_time = time.perf_counter()

    search_files_concurrently(file_locations, search_string)

    process_time = time.perf_counter() - start_time

    print(f”PROCESS TIME: {process_time}”)

This code searches for a specified word in all files in a given directory and its subdirec-
tories using multiple threads. Here’s some sample output:

Search in which directory?: /Users/kirill/books/

What word are you trying to find?: brillig

Found string in file: `Through the Looking-Glass.txt̀

PROCESS TIME: 0.04880058398703113

NOTE In this example, we want to use all available CPU cores to process 
multiple files simultaneously. But keep in mind that getting files from the 
hard disk is an I/O operation, so the data will not be in memory when we start 
the execution; thus we may not get chunks of data processed simultaneously 
(even with parallel hardware). However, using loop-level parallelism, the 
program can start useful execution as soon as at least one of the data chunks 
is read. The execution system can even be single-threaded; it still helps 
multitasking, where the work completes as soon as it can be executed.

In the example code, threads do the same work but on different iterations and hence 
different pieces of data. N threads can each work on 1/N pieces of data concurrently.

Map pattern

We have just implemented a new programming pattern: the map pattern. The idea is 
based on the technique of functional programming languages. It is used in cases where 
a single operation is applied to all elements of a collection, but all individual tasks are 
processed autonomously and have no side effects (they don’t change the program state 
but only convert input data into output data).
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The map pattern is used to solve embarrassingly parallel tasks: tasks that can be 
decomposed into independent subtasks that do not require communication/synchroni-
zation. Those subtasks are executed on one or more processes, threads, or SIMD tracks 
or multiple computers.

Loops take up a significant portion of execution time in many programs, especially in 
science and analytical systems, and they can take many forms. To understand whether 
your problem fits this pattern, you need to analyze at or close to the source code level. It 
is important to understand the dependencies between different loop iterations—whether 
data from the previous iteration is used in subsequent iterations.

NOTE Many libraries and frameworks in the wild use loop-level 
parallelism. Open Multi-Processing (OpenMP) uses loop-level parallelism 
for multicore processor architectures. NVIDIA’s CUDA library provides 
loop-level parallelism for GPU architectures. Map patterns are widely 
implemented in most modern programming languages, such as Scala, Java, 
Kotlin, Python, Haskell, and so on.

As you can see, data decomposition is widely used, but another pattern is even more 
common.

Fork/Join pattern

Unfortunately, an application is likely to have sequential parts (those that are not inde-
pendent and must be executed in a particular order) and concurrent parts (which can be 
executed out of order or even in parallel). There is another common concurrency pattern 
for those types of applications.
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Imagine that you’re responsible for organizing a vote-counting process for the local 
mayoral elections (please note that this is a fictional scenario, so take it with a grain of 
salt). The work is simple—just go through the ballots and count the number of votes for 
one candidate or another.

As it’s your first election, you don’t put much thought into organizing the process and 
decide to do it all by yourself after the polls close on Election Day. You go through the 
pile of ballots sequentially, one after another. It takes the whole day to finish, but you 
make it. The sequential solution looks similar to the following:

# Chapter 7/count_votes/count_votes_sequential.py

import typing as T

import random

Summary = T.Mapping[int, int]

def process_votes(pile: T.List[int]) -> Summary:

    summary = {}

    for vote in pile:

        if vote in summary:

            summary[vote] += 1

        else:

            summary[vote] = 1

    return summary

if __name__ == “__main__”:

    num_candidates = 3 

    num_voters = 100000 

    pile = [random.randint(1, num_candidates) for _ in range(num_voters)] 

    counts = process_votes(pile)

    print(f”Total number of votes: {counts}”)

The function takes an array of votes as an argument, with each element representing a 
vote for a particular candidate, and returns an associative array of the number of votes 
for each candidate.

As a result of this campaign, you get a promotion to Election Day organizer of the 
vote-counting process—not for a local election, but for national presidential elections! 
And as an enormous number of votes from different states will come your way, you real-
ize that it’s not feasible to use the same sequential approach again. 

How would you organize the process to make it possible to process a huge number of 
votes in a limited amount of time?

Generates a huge pile of 
votes for three candidates, 

where each vote is an 
integer representing the 

selected candidate
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The obvious way to process the big pile of votes is to split it into several smaller piles 
and give each pile to a separate staff member to process in parallel. By distributing the 
work among multiple people or even groups of people, you can easily speed up the pro-
cess. But that’s not all. You need to produce a report with the total number of votes for 
each candidate, not piles of summaries—they should be merged. So, you decide to orga-
nize the process of splitting the votes at the beginning, distribute that work among your 
staff members, and combine their individual results yourself when they are done.

To exploit parallel execution, you hire more staff members whose job will be to count 
votes. Suppose you hire four staff members. Then you can do the following: 

• Use the first staff member to sum the first quarter of the ballots.

• Use the second staff member to sum the second quarter of the ballots.

• Use the third staff member to sum the third quarter of the ballots.

• Use the fourth staff member to sum the fourth quarter of the ballots.

• Then you get all four results and combine them, returning the answer.

The first four tasks can be executed in parallel, but the last task is sequential as it depends 
on the results from previous steps.

Before looking at the following code, think of how you would solve the problem 
yourself:

# Chapter 7/count_votes/count_votes_concurrent.py 

import typing as T

import random

from multiprocessing.pool import ThreadPool
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Summary = T.Mapping[int, int]

def process_votes(pile: T.List[int], worker_count: int = 4) -> Summary:

    vote_count = len(pile) 

    vpw = vote_count // worker_count

    vote_piles = [ 

        pile[i * vpw:(i + 1) * vpw] 

        for i in range(worker_count) 

    ] 

    with ThreadPool(worker_count) as pool: 

        worker_summaries = pool.map(process_pile, vote_piles) 

    total_summary = {} 

    for worker_summary in worker_summaries: 

        print(f”Votes from staff member: {worker_summary}”) 

        for candidate, count in worker_summary.items(): 

            if candidate in total_summary: 

                total_summary[candidate] += count 

            else: 

                total_summary[candidate] = count 

    return total_summary         

def process_pile(pile: T.List[int]) -> Summary:

    summary = {}

    for vote in pile:

        if vote in summary:

            summary[vote] += 1

        else:

            summary[vote] = 1

    return summary

if __name__ == “__main__”:

    num_candidates = 3

    num_voters = 100000

    pile = [random.randint(1, num_candidates) for _ in range(num_voters)]

    counts = process_votes(pile)

    print(f”Total number of votes: {counts}”)

This example utilizes a popular programming pattern for creating concurrent applica-
tions. It’s called the fork/join pattern.

Fork step—
divides the 
votes among 
workers and 
runs them 
concurrently

Join step—merges 
the staff worker 

summaries
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The idea is as follows. We split the data into multiple smaller chunks and process them 
as independent tasks. In the example, smaller piles of votes are divided between staff 
members. This step is called a fork. As in loop-level parallelism, it can be scaled horizon-
tally by adding more processing resources.

Then we go through the process of combining the results of individual tasks until the 
solution to the original topmost problem is obtained. In the example, we need to aggre-
gate the final election results for each candidate’s votes from the results of each staff 
member summary. You can think of it as a synchronization point—in that step, we are 
just waiting for all the dependent tasks to be completed before calculating the final result. 
This step is called a join.

Combining the two steps, we get the fork/join pattern. As mentioned, this pattern is 
one of the most popular nowadays; many concurrent systems and libraries are written in 
this style.

Map/Reduce pattern

Map/reduce is another concurrency pattern and is closely related to fork/join. The idea of 
the map step is the same as the map pattern: one function maps all inputs to get new 
results (e.g., “multiply by 2”). The reduce step performs an aggregation (e.g., “sum up 
individual votes” or “take the minimum value”). The map and reduce steps are typically 
performed in sequence, with the map step producing intermediate results that are then 
processed by the reduce step.

In map/reduce, as in fork/join, a set of input data is processed in parallel by multiple 
processing resources. The results are then combined until a single response is obtained. 
Although structurally identical, the type of work performed reflects a slightly different 
philosophy. The map and reduce steps are more independent than the standard fork/join 



 Data decomposition 131

as they can scale beyond a single computer, utilizing a fleet of machines to perform a 
single operation on a large volume of data. Another distinction from the fork/join pat-
tern is that the map step can sometimes be done without reduction and vice versa.

This is one of the key concepts behind Google’s MapReduce framework and Yahoo’s 
open source variant of Apache Hadoop. In these systems, the developer simply writes 
operations that describe how to map and reduce data. The system then does all the work, 
often using hundreds or thousands of computers to process gigabytes or terabytes of 
data. Developers just need to wrap the necessary logic into the computing primitives 
provided by the framework, leaving everything else to the runtime system.

NOTE Another currently popular framework is inspired by MapReduce’s 
model: Apache Spark. This framework uses functional programming and 
pipeline processing to implement a map/reduce pattern. Instead of writing 
data to disk for each job as MapReduce does, Spark can cache the results 
across jobs. Moreover, Spark is the underlying framework many different 
systems are built on, including Spark SQL and DataFrames, GraphX, and 
Streaming Spark. That makes it easy to mix and match the use of these 
systems in the same application. These features make Spark the best fit for 
iterative jobs and interactive analytics and help it provide better performance.

Data decomposition and task decomposition are not mutually exclusive and can be 
implemented simultaneously by combining them for the same application. In this way, 
applications get the maximum boost from the use of concurrency.
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Granularity
In the previous voting example, we made two rather questionable assumptions:

• We assumed that we would have exactly four processing resources—the staff 
members—and that each processing resource would get about the same amount 
of work. However, limiting the number of processing resources used doesn’t 
make sense. We want concurrent applications to efficiently use all the processing 
resources available to them. Constantly using exactly four threads is not the best 
approach. If a program runs on a system with three cores, it will take longer than 
if evenly distributed among three threads on one core. On the contrary, if we 
have a system with eight cores, four will be idle.

• We assumed that every processing resource was available exclusively for our 
application at runtime. However, our application is not the only one in the 
system, and some processing resources may be needed by other applications or 
the system itself.

Putting these assumptions aside, a problem arises: How can we use all available resources 
on the system to perform tasks as efficiently as possible? Ideally, the number of tasks in 
decomposed problems should be at least as large as the number of available processing 
resources, preferably larger, to provide greater flexibility for the runtime system.

The number and size of tasks into which a problem is decomposed determine the 
granularity of the decomposition. Granularity is usually measured by the number of 
instructions executed in a particular task. For example, in our previous problem, divid-
ing the work into eight threads instead of four makes the program finer-grained and, in 
this case, more flexible. It can be executed on more computing resources, if available. If 
the system has only four cores available, not all threads will execute simultaneously 
because a core can physically execute only one thread at a time. But that’s okay, as the 
runtime system will keep track of which threads are waiting their turn and ensure that 
all the cores are busy. For example, the scheduler may decide that the first four threads 
will start running in parallel, and when they are finished, the remaining four will be 
executed. If there are eight cores available in the system, the system can execute all tasks 
in parallel.

With a coarse-grained approach, the program is split into larger tasks. As a conse-
quence, a large amount of computation falls on the processors. This can lead to load 
imbalance, with some tasks processing most of the data and others idle, which limits 
concurrency in the program. But the advantage of this type of granularity is the lower 
communication and coordination overhead.
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When fine granularity is used, the program is broken into many small tasks. Using fine 
granularity leads to more parallelism and therefore increases the system’s performance 
since these tasks are evenly distributed among several processors, so the amount of work 
associated with a concurrent task is small and executed very quickly.

But creating a large number of small tasks has a downside: by increasing the number 
of tasks that need to communicate, we significantly increase the cost of communication. 
To communicate, tasks have to stop computation to send and receive messages. In addi-
tion to communication costs, we may have to look at the cost of creating tasks. As we’ve 
said before, some overhead costs are associated with creating threads and processes. 
Increasing the number of tasks to, say, 1,000,000 will significantly increase the load on 
the OS scheduler and significantly reduce system performance. Thus, optimal perfor-
mance is achieved between the two extremes, fine-grained and coarse-grained.

Many algorithms developed using task decomposition have a fixed number of tasks of 
the same size, as well as structured connectivity, both local and global. In such cases, 
efficient mapping is straightforward. We map tasks in a way that minimizes interproces-
sor communication. We can also combine tasks mapped to a single processor, if this has 
not already been done, to get coarse-grained tasks, one per processor. This process of 
grouping tasks is called agglomeration (more about it in Chapter 13).

In talking about data decomposition, our effort should be to define as many smaller 
tasks as possible. This is useful because it forces us to consider a wide range of possibili-
ties for parallel execution. If necessary, tasks are merged into larger tasks—an agglomer-
ation process occurs to improve performance or reduce communication.



134 Chapter 7  I  Decomposition

In more complex algorithms based on task decomposition, with variable workloads 
per task and/or unstructured communication schemes, effective agglomeration and 
matching strategies may not be obvious to the developer. Consequently, we can use 
load-balancing algorithms that seek to identify efficient agglomeration and mapping 
strategies, usually using heuristics.

Recap
• There is no magic formula for how to decompose a programming problem. One 

tool that can help is to visualize the dependencies of the tasks in the algorithm by 
building a task dependency graph and finding independent tasks in it. 

• If an application has clear functional components, it may be advantageous to 
decompose that application into functionally independent tasks using task 
decomposition and then use MIMD/MISD systems for execution. Task 
decomposition answers the question, “How can a problem be decomposed into 
tasks that can execute concurrently?”

• Pipeline processing is a popular task decomposition pattern that can help increase 
the system’s throughput when the number of shared resources is limited. It can 
be used together with other decomposition approaches. 

• If an application has steps that can be performed independently on different data 
chunks, it may be advantageous to utilize data decomposition and use SIMD 
systems for execution. Data decomposition answers the question, “How can a 
problem’s data be decomposed into units that can be operated on relatively 
independently?”

• The map pattern, fork/join pattern, and map/reduce pattern are popular data 
decomposition patterns used extensively in many popular libraries and 
frameworks.

• Task number and size determine the granularity of the system. Ideally, the 
number of tasks into which a problem is decomposed should be at least the 
number of available processing resources, preferably more, to provide flexibility 
for the runtime system.
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In sequential programs, code execution follows a happy path of predictabil-
ity and determinism; looking at it and understanding what it does is as easy 
as understanding how each function works, given the current state of the 
program. But in a concurrent program, the state of the program changes 
during execution. External circumstances, such as the OS scheduler, cache 
coherency, or platform compilers, can affect the order of execution and 
resources the program accesses. In addition, concurrent tasks conflict with 
each other when they compete for the same resources, such as CPU, shared 
variables, or files, which often cannot be controlled by the OS. This can all 
affect the result of the program. 

The importance of concurrency control was made clear in May 2012 
during Facebook’s highly anticipated initial public offering (IPO). A glitch 
in NASDAQ’s system caused a 30-minute delay in Facebook’s opening. This 
race condition led to chaotic order changes and cancellations, resulting in 
significant losses for traders. The IPO’s underwhelming performance 

In this chapter

• You learn how to identify and solve one of the most 

common concurrency problems: race conditions

• You learn how to share resources between tasks safely 

and reliably using synchronization primitives

8Solving concurrency problems: 
Race conditions and synchronization
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overshadowed NASDAQ’s role in facilitating one of the largest IPOs in US history, high-
lighting the crucial need for effective concurrency control (http://mng.bz/Bmr2).

Hence, we cannot simply rely on the runtime system to manage and coordinate our 
program’s tasks and shared resources since the detailed requirements and program flow 
may not be obvious. In this chapter, we learn how to write code that provides synchro-
nized access to shared resources, look at common concurrency problems, and discuss 
possible solutions and popular concurrency patterns.

Shared resources
Let’s go back to our recipe example from earlier in the book. Often a recipe has several 
steps that can be done at the same time if there are several cooks in the kitchen. But if 
there is only one oven, you cannot cook a turkey and another dish at different tempera-
tures simultaneously. In this case, the oven is a shared resource.

In short, multiple cooks provide an opportunity to increase efficiency, but they also 
make the cooking process more difficult because of required communication and coordi-
nation. It is the same with programming: the OS runs tasks concurrently, and these tasks 
also depend on limited resources. These tasks operate independently, often unaware of 
each other’s existence and actions. Consequently, conflicts may arise when they attempt 
to utilize shared resources during runtime. To prevent such conflicts, it is essential for 
each task to leave the state of any resource it employs unaffected. For instance, consider 
a scenario where two tasks concurrently attempt to use a printer. Without proper control 
over printer access, an error could arise, leading the application (or even the whole sys-
tem) into an unknown and potentially invalid state.



 Race conditions 137

A function or operation is thread safe if it behaves correctly when accessed from mul-
tiple tasks, regardless of how those tasks are scheduled or interleaved by the execution 
environment. When it comes to thread safety, good application design is the best protec-
tion a developer can have. Avoiding resource sharing and minimizing communication 
between tasks make it less likely that these tasks will mess with each other. However, it is 
not always possible to create an application that does not use shared resources.

NOTE It’s easy to provide thread safety by using immutable objects and 
pure functions. Since they cannot change state, they cannot be corrupted by 
thread interference or observed in an inconsistent state. Immutability can be 
provided by the programming language or application so we don’t mutate 
data while multiple threads are using it. These methods are not covered in 
this book.

To understand what thread safety is, let’s first understand what an unsafe thread is, start-
ing, as always, with an example.

Race conditions
Imagine that you are writing banking software where there is an object for each bank 
account. Different tasks (such as tellers or ATMs) can deposit or withdraw funds from 
the same account. Suppose the bank has ATMs that use a shared-memory approach so 
all ATMs can read and write the same account objects.
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As an example, suppose the bank account class has methods for depositing and with-
drawing money:

# Chapter 8/race_condition/unsynced_bank_account.py

from bank_account import BankAccount

class UnsyncedBankAccount(BankAccount):

    def deposit(self, amount: float) -> None:

        if amount > 0:

            self.balance += amount

        else:

            raise ValueError(“You can’t deposit a negative amount of money”)

    def withdraw(self, amount: float) -> None:

        if 0 < amount <= self.balance:

            self.balance -= amount

        else:

            raise ValueError(“Account does not have sufficient funds”)

Here we have a class that implements a bank account with an internal variable balance, 
representing the amount of money in the account, and two methods, deposit() and 
withdraw(), which increase or decrease balance, respectively.

Imagine that you have a bunch of ATMs that execute the same transactions concur-
rently, as we usually assume in the real world. Here’s how it looks in the code:

# Chapter 8/race_condition/race_condition.py

import sys

import time

from threading import Thread

import typing as T

from bank_account import BankAccount

from unsynced_bank_account import UnsyncedBankAccount

THREAD_DELAY = 1e-16

class ATM(Thread):

    def __init__(self, bank_account: BankAccount):

        super().__init__()

        self.bank_account = bank_account
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    def transaction(self) -> None:

        self.bank_account.deposit(10)    
One transaction consists 
of consecutive deposits 
and withdrawals from a 
bank account.

        time.sleep(0.001) 

        self.bank_account.withdraw(10) 

    def run(self) -> None:

        self.transaction()

def test_atms(account: BankAccount, atm_number: int = 1000) -> None:

    atms: T.List[ATM] = []

    for _ in range(atm_number):   Creates a number of ATM threads 
that execute transactions on a 
bank account concurrently

        atm = ATM(account) 

        atms.append(atm) 

        atm.start() 

    for atm in atms:   Waits for the ATM threads 
to finish executing        atm.join() 

if __name__ == “__main__”:

    atm_number = 1000

    sys.setswitchinterval(THREAD_DELAY) 

    account = UnsyncedBankAccount()

    test_atms(account, atm_number=atm_number)

    print(“Balance of unsynced account after concurrent transactions:”)

    print(f”Actual: {account.balance}\nExpected: 0”)

We’ve implemented an ATM as a thread that simply calls the deposit() method fol-
lowed by a call to the withdraw() method with the same amount of money (say, $10). 
We run 1,000 ATMs concurrently. So the account balance should remain the same, as we 
add and remove the same amount of money—we expect the balance to be zero at the end 
of the program, right? 

But if we run this code, we often find that the balance at the end of the program is 
different:

Balance of unsynced account after concurrent transactions:

Actual: 380

Expected: 0

How is that possible?

Greatly increases the 
chance of an operation 
being interrupted by a 
context switch, thus 
testing synchronization 
effectively



140 Chapter 8  I  Solving concurrency problems: Race conditions and synchronization

Let’s zoom in on how the method breaks down into low-level instructions.

deposit() withdraw() Balance

Get balance ← 0

Add 10 0

Write back the result → 10

Get balance ← 10

Remove 10 –10

Write back the result → 0

Suppose that two ATMs, let’s call them A and B, deposit concurrently to a single bank 
account. In many scenarios, running the two method calls concurrently will not cause 
problems.

ATM A deposit() ATM B deposit() Balance

Get balance ← 0

Add 10 0

Write back the result → 10

Get balance ← 10

Add 10 10

Write back the result → 20

This looks great—we end up with the correct balance of $20, so both A and B executed 
their transactions correctly. 

But when ATMs A and B execute concurrently, these low-level instructions can inter-
leave with each other, something like the following.
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ATM A deposit() ATM B deposit() Balance

Get balance ← 0

Get balance ← 0

Add 10

Add 10

Write back the result → 10

Write back the result → 10

In this case, ATMs A and B simultaneously read the balance, calculate different final 
balances, and then save the new balance, which does not take into account the contribu-
tion of the other ATM—so one of the deposits is lost. The balance is now $10: a $10 
deposit has been lost!

The two threads run simultaneously on different processor cores, or the OS scheduler stops 
one thread and starts the other at any time, switching between them any number of times. If 
more than one call to the deposit() method is executed concurrently, the balance may end 
up in an incorrect state. If one thread deposits and another thread withdraws, the exception 
thrown by the withdrawing thread may depend on the order of operations.
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This is an example of a race condition. When we have a 
race condition, tasks access shared resources or common 
variables that can be used concurrently by other tasks, and 
as a result, the correctness of the program depends on the 
relative timing of concurrent operations. When this hap-
pens, we say, “One task is in a race with the other tasks.”

There are many reasons for a race condition. Compilers 
usually perform various optimizations to achieve faster code execution without chang-
ing the semantics of the code. If we force compilers to never do interleaving and other 
code optimizations, it’s difficult for the compilers to be efficient. Similarly, in hard-
ware, no single shared-memory area contains a single copy of all the data in a program. 
Instead, there are various caches and buffers, allowing the processor to access one 
memory area faster than another, as we saw in Chapter 3. As a result, the hardware has 
to keep track of different copies of the data and move them around. In doing so, mem-
ory operations can become “visible” to other threads in a different order than they 
occur in the program. As with compilers, requiring the hardware to run all read and 
write operations in the order they occur is considered too burdensome from a perfor-
mance standpoint. All the optimizations and reordering are completely hidden from 
developers, and we never have to worry about them if we avoid race conditions. 

Errors caused by race conditions are hard to reproduce and isolate. They are a kind of 
heisenbug: a program error that disappears or changes its behavior when we try to inves-
tigate it. Because a race condition is a semantic bug, it can only be detected at runtime 
and is difficult to understand just by looking at the code without running the program. 
So, unfortunately, there is no universal way to detect race conditions. Sometimes placing 
sleep operators in different places in the code can help us detect potential race condi-
tions by changing the timing and therefore the order of threads.

NOTE Make sure the libraries you are using are thread safe; if they are not, 
you will have to synchronize library calls. Also, be aware that global variables 
within a library may cause issues if the code is not designed to handle multiple 
concurrent calls. In such cases, you may need to abandon using the library.

As a result, we need mechanisms to provide synchronized access that prevents multiple 
tasks from alternating their operations in a way that leads to incorrect results and pro-
vides thread security.
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Synchronization
Synchronization is one solution to these problems. Synchronization is a mechanism that 
controls access to shared resources between multiple tasks. This is especially important 
when multiple tasks require access to resources that cannot be accessed simultaneously. 
The right synchronization mechanism ensures exclusivity and orderly access to a 
resource across tasks. In Chapters 2 and 6, we talked about coordination by synchroniz-
ing execution points and waiting for dependencies. Developers can also use synchroni-
zation to protect a critical section of code. 

A critical section is a piece of code that can be executed simultaneously by multiple 
tasks and has access to shared resources. For example, in the critical section, the devel-
oper may manipulate particular data structures or use a resource that supports no more 
than one client at a time, like a printer. 

We cannot simply rely on the OS to understand and enforce this restriction, since the 
detailed requirements may not be obvious to the OS scheduler. For example, in the case 
of a printer, we want any individual process to have control over the printer as long as it 
prints the entire file. Otherwise, lines from competing processes will alternate. There 
must be some kind of mutual exclusion mechanism within the critical section that allows 
only one task to perform a printing operation at a time. 
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However, processors have instructions that can be used to implement synchronization. 
These instructions enable the temporary disabling of interrupts within specific sections 
of code, ensuring that they cannot be interrupted. This feature is valuable when safe-
guarding critical code sections that require uninterrupted execution. While these syn-
chronization instructions find frequent application among compiler and OS developers, 
they are also abstracted as library functions in various programming languages. As a 
result, programmers can utilize these language-specific functions to shield critical 
code segments, even without directly manipulating the underlying processor-level 
instructions.

A popular primitive for synchronization called a lock controls access to critical sec-
tions. There are different types of locks with different behavior and semantics.

Mutual exclusion

The idea behind locks is that a task hangs a “Do not disturb” sign on 
the resource it is working with before the operation begins and does 
not remove it until the operation is complete (holding the lock). All 
other tasks check for a “Do not disturb” sign before trying to hang the 
sign and perform the operation themselves. If there is such a sign, the 
task is blocked and waits until the sign is removed to ensure that only 
it performs the operation, thus avoiding conflicting operations.

We have just introduced another state a process or thread can be 
in: the Blocked state. The following illustration shows the thread lifecycle (the same 
applies to processes) from being created, to readiness, to running, to possible blocking 
and, finally, to completion or termination.

To be able to work with the shared resource, a task must first get a lock on it. If another 
thread already holds the lock, the first thread must wait until the lock is released before 
it can acquire it, entering a Blocked state until then. This technique is called mutual 
exclusion, or mutex for short, because it ensures that only one task has exclusive access to 
the shared resource at any given time. There is a concurrency abstraction of the same 
name in many programming languages and OSs. 
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Only two states are possible for a mutex: locked and unlocked. The primitive is cre-
ated in the unlocked state and contains two methods: acquire() and release(). 
The acquire() method locks the mutex and blocks execution until the release() 
method unlocks it. The release() method is used to unlock the mutex and can only 
be called in the locked state. When the release method is called, the mutex is set to the 
unlocked state, and control is immediately returned to the calling thread.

Let’s use a mutex to solve our money problem. For the mutex to protect the internal 
balance variable, blocks of code that work with that variable—critical sections of our 
program—must be wrapped with calls to the acquire() and release() methods:

# Chapter 8/race_condition/synced_bank_account.py

from threading import Lock

from unsynced_bank_account import UnsyncedBankAccount

class SyncedBankAccount(UnsyncedBankAccount):

    def __init__(self, balance: float = 0):

        super().__init__(balance)

        self.mutex = Lock()

    def deposit(self, amount: float) -> None:

        self.mutex.acquire()    

        super().deposit(amount)

        self.mutex.release()  

    def withdraw(self, amount: float) -> None:

        self.mutex.acquire() 

        super().withdraw(amount)

        self.mutex.release() 

Here we add a mutex to our two methods so that only one operation of the same type will 
be performed at a time. This ensures that there is no race condition: deposit() and 
withdraw(), which read or write the balance, do so while holding the lock. If a thread 
tries to get a lock that currently belongs to another thread, it is blocked until the other 
thread releases the lock. Hence, no more than one thread can own a mutex at a time. 
Therefore, there cannot be simultaneous reading/writing or writing/writing, which we 
see in the results of the execution:

Balance of synced account after concurrent transactions:

Actual: 0

Expected: 0

Acquires the mutex on the 
shared resource, which 
guarantees that only one 
thread holding the mutex 
can run

Releases the mutex
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Synchronization is only effective when it is used consistently by all threads in the appli-
cation. If we create a mutex to restrict access to a shared resource, all threads must receive 
the same mutex before attempting to manipulate the resource. Failing to do so would 
compromise the protection provided by the mutex, leading to potential errors.

Semaphores 

A semaphore is another synchronization mechanism that can be used to control access 
to shared resources, similar to a mutex. But unlike a mutex, a semaphore can allow sev-
eral tasks to access the resource at the same time; hence it can be locked and unlocked by 
multiple tasks, while a mutex can be locked and unlocked only by the same task.

Internally, a semaphore holds a counter that keeps track of how many times it has 
been acquired or released. As long as the value of the semaphore counter is positive, any 
task can acquire the semaphore, thus decreasing the value of the counter. If the counter 
reaches zero, tasks attempting to acquire the semaphore are blocked and wait until the 
semaphore becomes available (the counter becomes positive). When a task finishes using 
a shared resource, it releases the semaphore, increasing the counter’s value. And if other 
threads are waiting to acquire the semaphore, they are told to wake up and do so.

In essence, a mutex can be viewed as a specialized type of semaphore called a binary 
semaphore. In the case of a mutex, the internal counter can have only two possible values: 
0 or 1.

NOTE The term semaphore was coined by computer scientist 
Edsger Dijkstra in the 1960s, who used the term to describe a 
synchronization primitive that can be used to signal between 
threads. The word comes from the use of flags and signal lamps 
to communicate between ships. Later, Dijkstra acknowledged 
that semaphore was not the best choice for the synchronization 
primitive he had described, as it was a more general concept that 
could be used for other purposes beyond signaling.

Let’s use a semaphore to simulate a public parking garage with a cer-
tain number of parking spaces and two entrances. We have cars that want to enter and 
leave the garage. A car cannot enter if it is not guaranteed a parking space, but it can 
always leave the garage when desired.
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To enter the garage, a car must get a parking ticket, corresponding to acquiring a sema-
phore. If there are available parking spots, the car is assigned one, and the semaphore 
count is decreased. However, when the garage reaches full capacity, the semaphore count 
drops to zero, preventing additional cars from entering. Only when a car that currently 
holds the semaphore releases it, typically after leaving the garage, can another car acquire 
the semaphore and enter the garage. Here’s the code:

# Chapter 8/semaphore.py

import typing as T

import time

import random

from threading import Thread, Semaphore, Lock

TOTAL_SPOTS = 3
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class Garage:

    def __init__(self) -> None:

        self.semaphore = Semaphore(TOTAL_SPOTS) 

        self.cars_lock = Lock() 

        self.parked_cars: T.List[str] = []

    def count_parked_cars(self) -> int:

        return len(self.parked_cars)

    def enter(self, car_name: str) -> None:

        self.semaphore.acquire()        

A semaphore controls 
the limited number of 
parking spots available 
in the garage.

        self.cars_lock.acquire() 

        self.parked_cars.append(car_name)

        print(f”{car_name} parked”)

        self.cars_lock.release() 

    def exit(self, car_name: str) -> None:

        self.cars_lock.acquire() 

        self.parked_cars.remove(car_name)

        print(f”{car_name} leaving”)

        self.semaphore.release()   

Releases the semaphore 
to signal that a parking 
spot is available

        self.cars_lock.release() 

In this code, we use both a mutex and a semaphore! Although they are similar in their 
properties, we use them for different purposes. We use a mutex to coordinate access to 
an internal variable: a list of parked cars. The semaphore is used to coordinate the 
enter() and exit() methods of the parking garage to limit the number of cars based on 
the available parking spots—in our case, only three spots.

If the semaphore is unavailable (because its value is zero), a car waits until a parking 
space is available and the semaphore is released. When the car thread acquires the sema-
phore, it prints a message that it is parked and then goes to sleep for a random period. 
The car thread then prints a message that it is leaving and releases the semaphore, 
increasing its value so that another waiting thread can acquire it. Let’s simulate a busy 
day in such a parking garage:

Ensures that only one thread 
at a time can modify the list 
of parked cars
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# Chapter 8/semaphore.py

def park_car(garage: Garage, car_name: str) -> None:

    garage.enter(car_name) 

    time.sleep(random.uniform(1, 2)) 

    garage.exit(car_name) 

def test_garage(garage: Garage, number_of_cars: int = 10) -> None:

    threads = []

    for car_num in range(number_of_cars): 

        t = Thread(target=park_car, 

                   args=(garage, f”Car #{car_num}”)) 

        threads.append(t) 

        t.start() 

    for thread in threads:

        thread.join()

if __name__ == “__main__”:

    number_of_cars = 10

    garage = Garage()

    test_garage(garage, number_of_cars) 

    print(“Number of parked cars after a busy day:”)

    print(f”Actual: {garage.count_parked_cars()}\nExpected: 0”)

Just as with a mutex, we get the expected result:

Car #0 parked

Car #1 parked

Car #2 parked

Car #0 leaving

Car #3 parked

Car #1 leaving

Car #4 parked

Car #2 leaving

Car #5 parked

Car #4 leaving

Car #6 parked

Car #5 leaving

Car #7 parked

Car #3 leaving

Car #8 parked

Car #7 leaving

Car #9 parked

A car parks in the garage, 
waits, and then exits.

Creates a number of 
threads to simulate 
multiple cars parking in 
the garage concurrently

Simulates a busy day at the garage 
by spawning threads that represent 
cars entering and leaving the garage
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Car #6 leaving

Car #8 leaving

Car #9 leaving

Number of parked cars after a busy day:

Actual: 0

Expected: 0

Another way to solve synchronization problems is to create more powerful operations 
that are executed in one step and thus eliminate the possibility of undesired interrupts. 
Such operations exist and are called atomic.

Atomic operations

Atomic operations are the simplest form of synchronization and work with primitive data 
types. Atomic means no other thread can see the operation in a partially completed state. 

For certain simple operations, such as incrementing a counter variable, atomic operations 
can offer significant performance benefits compared to traditional locking mechanisms. 
Instead of acquiring a lock, modifying the variable, and releasing the lock, atomic operations 
provide a more streamlined approach. Consider an example using assembly code:

add 0x9082a1b, $0x1 

Here the assembly instruction adds the value 1 to the memory location specified by the 
address 0x9082a1b. The hardware guarantees that this operation executes atomically 
without any interruption. When an interruption occurs, the operation either does not 
execute at all or executes to the end; there is no intermediate state.

The advantage of atomic operations is that they do not block competing tasks. This 
can potentially maximize concurrency and minimize synchronization costs. But these 
operations depend on special hardware instructions, and with good communication 
between hardware and software, guarantees of atomicity at the hardware level can be 
extended to the software level. 

NOTE Most programming languages provide atomic data structures, but 
you must be careful because not all data structures are atomic. For example, 
some Java collections are thread safe; in addition, Java has several nonblocking 
atomic data structures such as AtomicBoolean, AtomicInteger, 
AtomicLong, and AtomicReference. As another example, the C++ 
standard library provides atomic types such as std::atomic_int and 
std::atomic_bool.

But not all operations are atomic, so we should not assume that they are. When writing 
concurrent applications, there is a long tradition of pretending that we don’t know 



 Recap 151

anything but what the programming language standards tell us. When atomic opera-
tions are not available, use locks.

With this knowledge of synchronization in mind, in the next chapter, we look at some 
other common concurrency problems.

Recap
• When using shared resources, as is typical for concurrent programs, be careful to 

avoid concurrent access to shared resources since any task can be interrupted 
mid-execution. Those problems can lead to unexpected behavior and subtle bugs 
that don’t appear until much later.

• A critical section of code can be executed concurrently by multiple tasks and has 
access to shared resources. To ensure the exclusive use of critical sections, a 
synchronization mechanism is required.

• The simplest method to prevent unexpected behavior in a critical section is using 
atomic operations. Atomic means no other thread can see the operation in a 
partially completed state. But these operations rely on the environment 
(hardware and runtime environment support).

• Another method of synchronization, and the most common, is using locks. A 
lock is an abstract concept. The basic premise is that a lock protects access to a 
shared resource. If you own a lock, you can access the protected shared resource. 
If you do not own the lock, you cannot access the shared resource. 

• Tasks may require mutually exclusive operations, which can be protected by 
mutually exclusive locks or mutexes to prevent reading shared data in one task 
and updating it in another. 

• A semaphore is a lock that can be used to control access to shared resources, 
similar to a mutex. But unlike a mutex, a semaphore can allow several tasks to 
access the resource at the same time; hence it can be locked and unlocked by 
multiple tasks, while a mutex is locked and unlocked by the same task.

• Synchronization is expensive. Therefore, if possible, try to design without 
synchronization of any kind.

• When two tasks access and manipulate a shared resource concurrently, and the 
resulting execution outcome depends on the order in which processes access the 
resource, this is called a race condition. (One thread is in a race with the other.) 
This condition can be avoided by properly synchronizing threads in critical 
sections using techniques such as locks, atomic operations, or switching to 
message-passing interprocess communication.
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In the previous chapter, we explored the challenges that arise in concurrent 
programming, such as race conditions and the synchronization primitives 
used to address them. In this chapter, we focus on another set of common 
concurrency problems: deadlocks, livelocks, and starvation.

These problems can lead to extremely serious consequences, given that 
concurrency is used in all sorts of technology to which we quite literally 
entrust our lives. Two Boeing 737 Max airplanes crashed in 2018 and 2019 
due to a software error caused by a concurrency problem. The airplanes’ 
Maneuvering Characteristics Augmentation System (MCAS) was designed 
to prevent the airplane from stalling, but a race condition caused it to mal-
function, leading to fatal crashes that killed 347 people. A decade earlier, in 
2009 and 2010, Toyota vehicles experienced sudden, unintended accelera-
tion linked to a software error that caused a concurrency problem in the 
electronic throttle control system. The error caused the throttle to open 
unexpectedly, leading to several accidents and fatalities.

In this chapter

• You learn how to identify and solve common 

concurrency problems: deadlocks, livelocks, and 

starvation

• You learn popular concurrency design patterns: the 

producer-consumer and readers-writer patterns

9Solving concurrency problems: 
Deadlocks and starvation
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In this chapter, we explore how to identify and solve common concurrency problems, 
providing you with the knowledge and tools to address them effectively. By the end of the 
chapter, you will have a comprehensive understanding of common concurrency prob-
lems and popular concurrency patterns, including the producer-consumer and readers- 
writer patterns, enabling you to implement appropriate solutions to avoid potential 
disasters.

Dining philosophers
Locks (mutexes and semaphores) are very tricky to use. Incorrect use of locks can break 
an application when the locks acquired are not released or the locks that need to be 
acquired never become available. A classic example used to illustrate synchronization 
problems, when several tasks compete for locks, is philosophers having lunch, formu-
lated by computer scientist Edsger Dijkstra in 1965. This example is a standard test case 
for evaluating synchronization approaches.

Five silent philosophers sit at a round table with a plate of dumplings. Between each 
pair of neighboring philosophers lies a chopstick. The philosophers do what philoso-
phers do best—think and eat.

Only one philosopher can hold each chopstick, so a philosopher can only use a chop-
stick if no other philosopher is using it. After a philosopher has finished eating, they 
must put down both chopsticks so the chopsticks are available to the others. A philoso-
pher can only take the chopsticks to their right and left, can do so only when the chop-
sticks are available, and cannot start eating without taking both chopsticks.
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The problem is designing a ritual (algorithm) so that every philosopher can keep alter-
nating between eating and thinking, assuming that no philosopher can know when 
the others want to eat or think—making it a concurrent system.

The act of taking dumplings from the plate is a critical section, so we can develop a 
mutual exclusion process to protect it, using two chopsticks as mutexes. Thus, when a 
philosopher wants to bite into a dumpling, they will first take the chopstick on the left, 
if available, and put a lock on it. Then they will take the right chopstick, if it is avail-
able, and put a lock on it as well. Now they have two chopsticks—they are in the critical 
section, so they eat a dumpling. Then they put down the right chopstick to unlock it, 
followed by the left chopstick. Finally, being a philosopher, they will go back to 
philosophizing.

In the code, the process looks like this:

# Chapter 9/deadlock/deadlock.py

import time

from threading import Thread

from lock_with_name import LockWithName

dumplings = 20

class Philosopher(Thread):

    def __init__(self, name: str, left_chopstick: LockWithName,

                 right_chopstick: LockWithName):

        super().__init__()

        self.name = name

        self.left_chopstick = left_chopstick

        self.right_chopstick = right_chopstick

    def run(self) -> None:

        global dumplings

        while dumplings > 0:  

Eat until there are 
no dumplings left.

            self.left_chopstick.acquire()  

Acquires the 
left chopstick

            print(f”{self.left_chopstick.name} grabbed by {self.name} “

                  f”now needs {self.right_chopstick.name}”)

            self.right_chopstick.acquire() 

            print(f”{self.right_chopstick.name} grabbed by {self.name}”)

Each philosopher is 
associated with two 
chopsticks, one on their  
left and one on their right.

Acquires the right chopstick
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            dumplings -= 1

            print(f”{self.name} eats a dumpling. “

                  f”Dumplings left: {dumplings}”)

            self.right_chopstick.release()   

Releases the 
right chopstick 

            print(f”{self.right_chopstick.name} released by {self.name}”) 

            self.left_chopstick.release() 

            print(f”{self.left_chopstick.name} released by {self.name}”)

            print(f”{self.name} is thinking...”)

            time.sleep(0.1)

In this code, the Philosopher thread represents a single philosopher. It contains the 
name of the philosopher and two mutexes named left_chopstick and right_
chopstick to specify the order in which the philosopher acquires them. 

We also have a shared variable, dumplings, to represent the remaining dumplings 
on the shared plate. The while loop makes the philosophers keep taking dumplings as 
long as some are left on the plate. As part of the loop, a philosopher takes and acquires a 
lock on their left chopstick and then on their right chopstick. Then, if there are still 
dumplings on the plate, the philosopher takes one, decreasing the dumplings variable, 
and displays a message saying how many dumplings are left. 

Being philosophers, they keep alternating between eating and thinking. But because 
they operate as concurrent tasks, none of them know when the others want to eat or 
think, which can lead to problems. Let’s look at some of the problems that may arise 
when running this code, as well as possible solutions.

Deadlocks
To simplify explanations in this section, let’s decrease the number of philosophers to 
two, preserving the original algorithm:

# Chapter 9/deadlock/deadlock.py

if __name__ == “__main__”:

    chopstick_a = LockWithName(“chopstick_a”)

    chopstick_b = LockWithName(“chopstick_b”)

    philosopher_1 = Philosopher(“Philosopher #1”, chopstick_a, 

chopstick_b)

    philosopher_2 = Philosopher(“Philosopher #2”, chopstick_b, 

chopstick_a)

    philosopher_1.start()

    philosopher_2.start()

A dumpling 
is gone.

Releases the 
left chopstick
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When we run this program, we see output similar to the following:

Philosopher #1 eats a dumpling. Dumplings left: 19

Philosopher #1 eats a dumpling. Dumplings left: 18

Philosopher #2 eats a dumpling. Dumplings left: 17

...

Philosopher #2 eat a dumpling. Dumplings left: 9

The program doesn’t finish—it’s stuck, and there are still dumplings on the plate. What’s 
going on? 

Suppose the first philosopher gets hungry and takes chopstick A. The second philos-
opher, at the same time, also gets hungry and takes chopstick B. They each have one of 
the two locks they need, but they are both stuck waiting for the other thread to release 
the remaining lock.

This is an example of a situation called a deadlock. During a deadlock, multiple tasks 
are waiting for resources occupied by the others, and none of them can continue execu-
tion. The program is stuck in this state forever, so it is necessary to manually terminate 
its execution. Running the same program again will result in a deadlock after a different 
number of dumplings. The exact number at which the philosophers get stuck depends on 
how the system schedules the tasks.

As with a race condition, you may be lucky enough never to run into this problem in 
your applications. However, if even the potential for deadlocks exists, they should be 
avoided. Every time a task tries to get more than one lock at a time, there is a possibility 
of a deadlock. Avoiding deadlocks is a common problem for concurrent programs using 
mutual exclusion mechanisms to protect critical code sections.
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NOTE Never assume a specific order of execution. When there are multiple 
threads, as we have seen, the execution order is nondeterministic. If you care 
about the execution order of one thread relative to another, you must apply 
synchronization. But for the best performance, you should avoid synchronization 
as much as possible. In particular, you want highly detailed tasks that do not 
require synchronization; this will allow your cores to work as fast as possible 
on each task assigned to them.

To consider a more realistic example for a moment (it’s not every day that we feed philos-
ophers dumplings), let’s imagine a real system: your home computer with two applica-
tions installed, such as video chat (like Zoom or Skype) and a movie-watching application 
(like Netflix or YouTube). The two programs serve different functions—one lets you chat 
with coworkers or friends, and the other lets you watch cool movies—but both access the 
same subsystems of your computer, such as the screen and audio. Imagine that they both 
want access to the screen and audio. They make their requests simultaneously, and the 
OS gives the screen to the movie app and the audio to the video chat. Both programs 
block the resource they have and then wait for the remaining resource to become avail-
able. They will wait forever, just like our poor philosophers! The deadlock is permanent 
unless the OS takes drastic action, such as killing one or more processes or forcing one 
or more processes to backtrack. 
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Arbitrator solution

Returning to our philosophers, to avoid a deadlock, we can make sure each philosopher 
can take either both chopsticks or none. The easiest way to achieve this is to introduce an 
arbitrator—someone in charge of the chopsticks, such as a waiter. To take a chopstick, 
the philosopher must ask the waiter for permission to grab it first. The waiter only gives 
permission to one philosopher at a time until they take both chopsticks. Putting down a 
chopstick is allowed at all times.

The waiter can be implemented with another lock:

# Chapter 9/deadlock/deadlock_arbitrator.py

import time

from threading import Thread, Lock

from lock_with_name import LockWithName

dumplings = 20

class Waiter:

    def __init__(self) -> None:

        self.mutex = Lock()
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    def ask_for_chopsticks(self, left_chopstick: LockWithName,

                           right_chopstick: LockWithName) -> None:

        with self.mutex: 

            left_chopstick.acquire() 

            print(f”{left_chopstick.name} grabbed”)

            right_chopstick.acquire() 

            print(f”{right_chopstick.name} grabbed”)

    def release_chopsticks(self, left_chopstick: LockWithName,

                           right_chopstick: LockWithName) -> None:

        right_chopstick.release() 

        print(f”{right_chopstick.name} released”)

        left_chopstick.release() 

        print(f”{left_chopstick.name} released\n”)

And we can use the waiter as a lock, as follows:

# Chapter 9/deadlock/deadlock_arbitrator.py

class Philosopher(Thread):

    def __init__(self, name: str, waiter: Waiter,

                 left_chopstick: LockWithName,

                 right_chopstick: LockWithName):

        super().__init__()

        self.name = name

        self.left_chopstick = left_chopstick

        self.right_chopstick = right_chopstick

        self.waiter = waiter

    def run(self) -> None:

        global dumplings

        while dumplings > 0:

            print(f”{self.name} asks waiter for chopsticks”)

            self.waiter.ask_for_chopsticks( 

                self.left_chopstick, self.right_chopstick) 

            dumplings -= 1

            print(f”{self.name} eats a dumpling. “

                  f”Dumplings left: {dumplings}”)

            print(f”{self.name} returns chopsticks to waiter”)

            self.waiter.release_chopsticks( 

                self.left_chopstick, self.right_chopstick) 

            time.sleep(0.1)

Internal mutex to safeguard a critical section, ensuring 
that it can only be accessed by one thread at a time

The waiter is  
now responsible 
for managing  
the allocation 
and release of 
chopsticks.

A philosopher asks the 
waiter for chopsticks.

The philosopher 
returns the 
chopsticks to 
the waiter 
after eating.
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if __name__ == “__main__”:

    chopstick_a = LockWithName(“chopstick_a”)

    chopstick_b = LockWithName(“chopstick_b”)

    waiter = Waiter()

    philosopher_1 = Philosopher(“Philosopher #1”, waiter, chopstick_a,

                                chopstick_b)

    philosopher_2 = Philosopher(“Philosopher #2”, waiter, chopstick_b,

                                chopstick_a)

    philosopher_1.start()

    philosopher_2.start()

Because it introduces a new central entity—the waiter—this approach can lead to limited 
concurrency: if a philosopher eats and one of their neighbors requests chopsticks, all 
other philosophers must wait until this request is fulfilled, even if chopsticks are avail-
able to them. In a real computer system, the arbitrator does much the same thing, con-
trolling access by the worker threads to ensure that access is orderly. This solution 
reduces concurrency—but we can do better than that. 

Resource hierarchy solution

What if we set priorities on the locks so the philosophers try to take the same chopstick 
first? This way they won’t have a deadlock problem, because they will be competing for 
the same first lock.

Both philosophers must agree that, out of the two chopsticks they plan to use, the 
chopstick with the highest priority should always be taken first. In our case, both philos-
ophers compete simultaneously for the chopstick with the highest priority. When one 
philosopher wins the battle and takes the chopstick with the highest priority, only the 
chopstick with the lowest priority remains on the table. Because the philosophers have 
agreed to use the highest-priority chopstick first, the second philosopher cannot take the 
remaining chopstick. Furthermore, the philosopher who took the first chopstick now 
has access to the chopstick with the lowest priority, allowing them to start eating with 
both chopsticks. Genius!

Let’s set priorities for our chopsticks. We’ll say that chopstick A has the highest prior-
ity, and chopstick B, the second highest. Each philosopher should always get the chop-
stick with the highest priority first.
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In our code, Philosopher #2 creates a problem by acquiring chopstick B before A. To fix 
that, we change the chopstick acquisition order without changing any other code. First 
we acquire chopstick A, and then we acquire chopstick B:

# Chapter 9/deadlock/deadlock_hierarchy.py

from lock_with_name import LockWithName

from deadlock import Philosopher

if __name__ == “__main__”:

    chopstick_a = LockWithName(“chopstick_a”)

    chopstick_b = LockWithName(“chopstick_b”)

    philosopher_1 = Philosopher(“Philosopher #1”, chopstick_a, 

chopstick_b)

    philosopher_2 = Philosopher(“Philosopher #2”, chopstick_a, 

chopstick_b)

    philosopher_1.start()

    philosopher_2.start()

When we run the program after making this change, it runs to the end without any 
deadlocks.
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NOTE Ordering locks is not always possible if a task does not know 
beforehand all the locks it needs to acquire. Deadlock avoidance mechanisms 
like resource allocation graphs (RAGs) and lock hierarchies can be used to 
prevent deadlocks. A RAG helps detect and prevent cycles in the relationships 
between processes and resources. Higher-level synchronization primitives in 
some programming languages and frameworks simplify lock management. 
However, careful design and testing are still necessary as these techniques do 
not guarantee the complete elimination of deadlocks. 

Another method of preventing deadlocks is to set a timeout on blocking attempts. If 
the task cannot successfully get all the locks it needs within a certain time, we force the 
thread to release all the locks it currently holds. But that may cause another problem: 
a livelock.

Livelocks
A livelock is similar to a deadlock and occurs when two tasks are competing for the same 
set of resources—but in a livelock, a task gives up its first lock in an attempt to get a sec-
ond lock. After getting the second lock, it comes back and tries to get the first lock again. 
The task is now in the same blocked state because it spends all its time releasing one lock 
and trying to get another instead of doing actual work.

Imagine that you are making a phone call, but the person on the other end is also 
trying to call you. You both hang up and try again at the same time, which creates the 
same situation. In the end, neither of you can get through to the other.
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A livelock occurs when tasks are actively performing concurrent tasks, but these tasks do 
not affect moving the program’s state forward. It is similar to a deadlock, but the differ-
ence is that the tasks are “polite” and let others do their work first.

Let’s imagine that our philosophers have become a little more polite than they were—
they can give up a chopstick if they can’t get both:

# Chapter 9/livelock.py

import time

from threading import Thread

from deadlock.lock_with_name import LockWithName

dumplings = 20

class Philosopher(Thread):

    def __init__(self, name: str, left_chopstick: LockWithName,

                 right_chopstick: LockWithName):

        super().__init__()

        self.name = name

        self.left_chopstick = left_chopstick

        self.right_chopstick = right_chopstick

    def run(self) -> None:

        global dumplings

        while dumplings > 0:

            self.left_chopstick.acquire() 

            print(f”{self.left_chopstick.name} chopstick “

                  f”grabbed by {self.name}”)

            if self.right_chopstick.locked(): 

                print(f”{self.name} cannot get the “ 

                      f”{self.right_chopstick.name} chopstick, “ 

                      f”politely concedes...”) 

            else: 

                self.right_chopstick.acquire() 

                print(f”{self.right_chopstick.name} chopstick “ 

                      f”grabbed by {self.name}”) 

                dumplings -= 1 

                print(f”{self.name} eats a dumpling. Dumplings “ 

                      f”left: {dumplings}”) 

                time.sleep(1) 

                self.right_chopstick.release() 

            self.left_chopstick.release() 

A philosopher 
tries to acquire 
the right 
chopstick. If it is 
available, the 
philosopher grabs 
it and eats a 
dumpling; 
otherwise, they 
concede and 
release the left 
chopstick.

The left chopstick is acquired by 
a philosopher. There are two 
philosophers, so they each grab 
one chopstick from the table.
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if __name__ == “__main__”:

    chopstick_a = LockWithName(“chopstick_a”)

    chopstick_b = LockWithName(“chopstick_b”)

    philosopher_1 = Philosopher(“Philosopher #1”, chopstick_a, chopstick_b)

    philosopher_2 = Philosopher(“Philosopher #2”, chopstick_b, chopstick_a)

    philosopher_1.start()

    philosopher_2.start()

Unfortunately, these nice people are not destined to eat:

chopstick_a chopstick grabbed by Philosopher # 1

Philosopher # 1 cannot get the chopstick_b chopstick, politely concedes...

chopstick_b chopstick grabbed by Philosopher #  2

Philosopher # 2 cannot get the chopstick_a chopstick, politely concedes...

chopstick_b chopstick grabbed by Philosopher # 2

chopstick_a chopstick grabbed by Philosopher # 1

Philosopher # 2 cannot get the chopstick_a chopstick, politely concedes...

Philosopher # 1 cannot get the chopstick_b chopstick, politely concedes...

chopstick_b chopstick grabbed by Philosopher # 2

chopstick_a chopstick grabbed by Philosopher # 1

Philosopher # 2 cannot get the chopstick_a chopstick, politely concedes...

Philosopher # 1 cannot get the chopstick_b chopstick, politely concedes...

In addition to doing zero work, this approach can lead to system overloads with frequent 
context switching, reducing overall system performance. In addition, the OS scheduler 
cannot implement fairness because it does not know which task has been waiting longest 
for the shared resource.

To avoid this type of locking, we can order the locking sequence hierarchically as we did 
with resolving a deadlock. This way, only one process can block both locks successfully.

NOTE Detecting and resolving livelocks is often more challenging than 
doing so for deadlocks because livelock scenarios involve complex and 
dynamic interactions among multiple entities, making them harder to identify 
and resolve.

Livelocks are a subset of a broader set of problems called starvation.
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Starvation
Let’s add a local variable to keep track of how many dumplings each Philosopher 
thread eats: 

# Chapter 9/starvation.py

from threading import Thread

from deadlock.lock_with_name import LockWithName

dumplings = 1000

class Philosopher(Thread):

    def __init__(self, name: str, left_chopstick: LockWithName,

                 right_chopstick: LockWithName):

        super().__init__()

        self.name = name

        self.left_chopstick = left_chopstick

        self.right_chopstick = right_chopstick

    def run(self) -> None:

        global dumplings

        dumplings_eaten = 0 

        while dumplings > 0:

            self.left_chopstick.acquire()

            self.right_chopstick.acquire()

            if dumplings > 0:

                dumplings -= 1

                dumplings_eaten += 1 

                time.sleep(1e-16)

            self.right_chopstick.release()

            self.left_chopstick.release()

        print(f”{self.name} took {dumplings_eaten} pieces”)

if __name__ == “__main__”:

    chopstick_a = LockWithName(“chopstick_a”)

    chopstick_b = LockWithName(“chopstick_b”)

    threads = [] 

    for i in range(10):          

        threads.append(          

            Philosopher(f”Philosopher #{i}”, chopstick_a, chopstick_b))

The variable dumplings_
eaten keeps track of the 
number of dumplings this 
philosopher has eaten.
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    for thread in threads:      

        thread.start()      

    for thread in threads:

        thread.join()

We name the variable dumplings_eaten and initialize it to zero. We also added more 
philosophers this time. We increment dumplings_eaten each time a philosopher 
eats a dumpling. When the program finishes, we see that each of the philosophers has 
eaten a different number of dumplings, and that’s not fair:

Philosopher #1 took 417 pieces

Philosopher #9 took 0 pieces

Philosopher #6 took 0 pieces

Philosopher #7 took 0 pieces

Philosopher #5 took 0 pieces

Philosopher #0 took 4 pieces

Philosopher #2 took 3 pieces

Philosopher #8 took 268 pieces

Philosopher #3 took 308 pieces

Philosopher #4 took 0 pieces

Philosopher #1 took a lot more dumplings than Philosopher #8—more than 400 pieces. 
It seems that Philosopher #8 is sometimes slow to take a chopstick, and Philosopher #1 
thinks quickly and takes the chopstick back, while Philosopher #8 is again stuck waiting. 
Some philosophers never take both chopsticks. If this happens once in a while, it’s prob-
ably okay, but if it happens regularly, the thread will starve.

Starvation is exactly what it sounds like: a thread is quite literally starved, never gain-
ing access to required resources, and no progress is made. If another greedy task often 
holds a lock on a shared resource, the starving task will not get a chance to execute. 

NOTE Starvation is one of the basic ideas behind the most famous type of 
attacks against online services: denial of service (DOS) attacks. In these 
attacks, the attacker tries to deplete all of the server’s resources. The service 
starts to run out of available resources (storage, memory, or computing 
resources), crashes, and cannot provide its services.

Starvation is usually caused by an oversimplified scheduling algorithm. The scheduling 
algorithm, as we learned in Chapter 6, is part of the runtime system. It should distribute 
resources equally among all the tasks; that is, the scheduler should distribute resources 
in such a way that no task is constantly blocked from accessing the resources it needs to 
complete its work. The treatment of different task priorities depends on the OS, but tasks 
with a higher priority are usually scheduled to run more often, and this can cause 
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low-priority tasks to starve. Another thing that can lead to starvation is too many tasks 
in the system, when it takes a long time before a task starts execution.

A possible solution to starvation is to use a scheduling algorithm with priority queu-
ing, which also uses the aging technique. Aging is a technique of gradually increasing the 
priority of threads waiting in the system for a long time. Eventually, a thread reaches a 
high enough priority to be scheduled to access resources/processors and terminate 
appropriately. We do not discuss this concept in detail, as it is very specific; if you’re 
interested in learning more, see Andrew Tanenbaum’s book Modern Operating Systems.1 
But don’t feel limited to one book; by all means, see what is out there.

With all this knowledge of synchronization in mind, let’s look at some concurrency 
design problems.

Designing synchronization
When designing systems, it is useful to relate the problem at hand to known problems. 
Several problems have gained importance in the literature and are often found in real-
world scenarios. The first of these is the producer-consumer problem.

Producer-consumer problem

Suppose that one or more producers generate items and put them into a buffer. Some 
consumers take items from the same buffer, processing them one at a time. A single pro-
ducer can generate and store items in the buffer at its own pace. The consumer acts sim-
ilarly but must ensure that it does not read from an empty buffer. Thus, the system must 
be constrained to prevent conflicting operations for the buffer. Breaking this down, we 
need to make sure the producer does not try to add data to the buffer if it is full, and the 
consumer does not access data from an empty buffer. Concurrency programming is 
already at your fingertips, so try to solve this problem yourself before you go any 
further.

The basic implementation looks like this:

# Chapter 9/producer_consumer.py

import time

from threading import Thread, Semaphore, Lock

SIZE = 5

BUFFER = [“” for i in range(SIZE)]       

Shared 
buffer

producer_idx: int = 0

1 Andrew S. Tanenbaum, Modern Operating Systems, 4th ed., Pearson Education, 2015.
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mutex = Lock()

empty = Semaphore(SIZE)

full = Semaphore(0)

class Producer(Thread):

    def __init__(self, name: str, maximum_items: int = 5):

        super().__init__()

        self.counter = 0

        self.name = name

        self.maximum_items = maximum_items

    def next_index(self, index: int) -> int:

        return (index + 1) % SIZE

    def run(self) -> None:

        global producer_idx

        while self.counter < self.maximum_items:

            empty.acquire() 

            mutex.acquire() 

            self.counter += 1

            BUFFER[producer_idx] = f”{self.name}-{self.counter}”

            print(f”{self.name} produced: “

                  f”’{BUFFER[producer_idx]}’ into slot {producer_idx}”)

            producer_idx = self.next_index(producer_idx)

            mutex.release() 

            full.release() 

            time.sleep(1)

class Consumer(Thread):

    def __init__(self, name: str, maximum_items: int = 10):

        super().__init__()

        self.name = name

        self.idx = 0

        self.counter = 0

        self.maximum_items = maximum_items

    def next_index(self) -> int:

        return (self.idx + 1) % SIZE  

    def run(self) -> None:

        while self.counter < self.maximum_items:

            full.acquire() 

            mutex.acquire() 

There is at least one 
empty slot in the buffer.

Enters a critical 
section that 

modifies  the 
shared buffer

A new item has 
been added to the 
buffer, and there is 
one less empty slot.

Gets the next buffer 
index to consume

There is at least one 
item in the buffer that 
can be consumed.

Enters a critical 
section that modifies 
the shared buffer
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            item = BUFFER[self.idx]

            print(f”{self.name} consumed item: “

                  f”’{item}’ from slot {self.idx}”)

            self.idx = self.next_index()

            self.counter += 1

            mutex.release() 

            empty.release() 

            time.sleep(2)

if __name__ == “__main__”:

    threads = [

        Producer(“SpongeBob”),

        Producer(“Patrick”),

        Consumer(“Squidward”)

    ]

    for thread in threads:

        thread.start()

    for thread in threads:

        thread.join()

Let’s analyze this code. We use three synchronizations:

• full—The semaphore keeps track of the space the Producer fills. At the 
beginning of the program, it is initialized as locked (the counter equals zero) 
because the buffer is completely empty: producers haven’t had time to fill it yet.

• empty—The semaphore tracks empty slots in the buffer. Initially it is set to its 
maximum value (SIZE in the code) because at the beginning, the buffer is empty.

• mutex—The mutex is used for mutual exclusion so that only one thread can 
access the shared resource—the buffer—at a time.

The producer can insert a buffer at any time. In a critical section, the producer adds an 
element to the buffer and increases the buffer index used for all producers; the mutex 
controls access to the critical section. But before putting data into the buffer, the pro-
ducer tries to get an empty semaphore and decrease its value by 1. If the value of this 
semaphore is 0, it means the buffer is full, and the semaphore will block all producers 
until the buffer has available space (the empty semaphore is greater than 0). The pro-
ducer releases the full semaphore after adding one element to it.

On the other hand, the consumer tries to get a full semaphore before consuming 
data from the buffer. If the value of this semaphore is 0, the buffer is empty, and our 
full semaphore blocks any consumer until the value of the full semaphore is greater 

Enters a critical 
section that 
modifies the 
shared buffer

A new empty slot is available 
in the buffer after an item 
has been consumed.
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than 0. Then the consumer takes the element from the buffer and works with it in its 
critical section. After the consumer has processed all the data from the buffer, it releases 
the empty semaphore, increasing its value by 1 to let producers know that there is free 
space for a new element.

If the producer is ahead of the consumer, which is the usual situation, the consumer 
will rarely block on the empty semaphore because the buffer usually will not be empty. 
Consequently, both the producer and the consumer work without problems with a 
shared buffer.

NOTE The same problem arises in the implementation of pipe interprocess 
communication (IPC) in Linux. Each pipe has its own pipe buffer, which is 
guarded by semaphores.

In the next section, we look at another classic problem: the readers-writer problem.

Readers-writer problem

Not all operations are born equal. Simultaneous reading of the same data by any number 
of tasks will not cause concurrency problems if the data being accessed does not change. 
The data can be a file, a block of memory, or even a CPU register. It is possible to allow 
multiple simultaneous reads of data as long as anyone writing the data does so exclu-
sively—that is, as long as there are no simultaneous writers.

For example, suppose the shared data is the library catalog. Regular library users read 
the catalog to find a book they are interested in. One or more librarians may update the 
catalog. Generally, each access to the catalog is treated as a critical section, and users are 
forced to take turns reading the catalog. This clearly leads to unacceptable delays. At the 
same time, it is important to prevent librarians from interfering with each other, and it is 
necessary to prevent reading while writing to prevent access to conflicting information.

If we generalize, we can say that some tasks only read data (readers = library users) 
and some tasks only write data (writers = librarians):

• Any number of readers can read shared data at the same time.

• Only one writer can write to the shared data at a time.

• While a writer is writing to shared data, no reader can read it.

This way, we prevent any race conditions or bad interleaving due to read/write or write/
write errors. 

Thus, readers are tasks that must not exclude each other, and writers are tasks that 
must exclude all other tasks, both readers and writers. In this way, we achieve an effi-
cient solution to the problem instead of simply mutually excluding a shared resource 
for any operation.
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Libraries and programming languages often include a readers-writer lock (RWLock) 
that solves such problems. This type of lock is usually used in large operations and can 
greatly improve performance if the protected data structure is read often and changed 
only occasionally. Since there is no such thing in Python, let’s implement it ourselves:

# Chapter 9/reader_writer/rwlock.py

from threading import Lock

class RWLock:

    def __init__(self) -> None:

        self.readers = 0

        self.read_lock = Lock()

        self.write_lock = Lock()

    def acquire_read(self) -> None: 

        self.read_lock.acquire() 

        self.readers += 1 

        if self.readers == 1: 

            self.write_lock.acquire() 

        self.read_lock.release() 

    def release_read(self) -> None: 

        assert self.readers >= 1 

        self.read_lock.acquire() 

        self.readers -= 1 

        if self.readers == 0: 

            self.write_lock.release() 

        self.read_lock.release() 

    def acquire_write(self) -> None: 

        self.write_lock.acquire() 

    def release_write(self) -> None: 

        self.write_lock.release() 

During normal operation, a lock can be accessed by several readers at the same time. 
However, when a thread wants to update the shared data, it blocks until all readers 
release the lock, after which the writer gets the lock and updates the shared data. While 
a thread is updating the shared data, new reader threads are blocked until the writer 
thread is finished.

Here is an example of the reader and writer threads implementation:

Acquires the read lock for 
the current thread. If a 
writer is waiting for the 
lock, the method blocks until 
the writer releases the lock.

Releases the read lock 
held by the current 
thread. If no more 
readers are holding the 
lock, the method 
releases the write lock.

Acquires the write lock 
for the current thread. 
If a reader or a writer is 
holding the lock, the 
method blocks until the 
lock is released.

Releases the write 
lock held by the 
current thread
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# Chapter 9/reader_writer/reader_writer.py

import time

import random

from threading import Thread

from rwlock import RWLock

counter = 0          

Shared 
data

lock = RWLock()

class User(Thread):

    def __init__(self, idx: int):

        super().__init__()

        self.idx = idx

    def run(self) -> None:

        while True:

            lock.acquire_read()

            print(f”User {self.idx} reading: {counter}”)

            time.sleep(random.randrange(1, 3))

            lock.release_read()

            time.sleep(0.5) 

class Librarian(Thread):

    def run(self) -> None:

        global counter

        while True:

            lock.acquire_write()

            print(“Librarian writing...”)

            counter += 1

            print(f”New value: {counter}”)

            time.sleep(random.randrange(1, 3))

            lock.release_write()

if __name__ == “__main__”:

    threads = [

        User(0),

        User(1),

        Librarian()

    ]

    for thread in threads:

        thread.start()

    for thread in threads:

        thread.join()
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Here we have two user threads that read shared memory and one librarian thread that 
changes it. The output is as follows:

User 0 reading: 0

User 1 reading: 0

Librarian writing...

New value: 1

User 0 reading: 1

User 1 reading: 1

Librarian writing...

New value: 2

User 0 reading: 2

User 1 reading: 2

User 0 reading: 2

User 1 reading: 2

User 0 reading: 2

User 1 reading: 2

User 0 reading: 2

Librarian writing...

New value: 3

The output shows that no user reads while the librarian is writing, and no librarian 
writes while any of the users are still reading the shared memory. 

A last few words
This was a long chapter! Let’s review the main points. 

When it comes to thread safety, good design is the best protection a developer can 
have. Avoiding shared resources and minimizing communication between tasks makes 
it less likely that these tasks will mess with each other. However, it is not always possible 
to create an application that does not use shared resources. In that case, proper synchro-
nization is required.

Synchronization helps ensure that the code is correct, but it comes at the expense of 
performance. The use of locks introduces delays even in nonconflicting cases. For a task 
to access shared data, it must first obtain a lock associated with that data. To get the lock, 
synchronize it between tasks, and monitor the shared objects, the processor has to do a 
lot of work hidden from the developer. Locks and atomic operations usually involve 
memory barriers and kernel-level synchronization to ensure proper code protection. If 
multiple tasks are trying to get the same lock, the overhead increases even more. Global 
locks can also become scalability inhibitors. 
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Therefore, if possible, try to design without synchronization of any type. In the case 
of communication, instead of shared memory, consider using message-passing IPC—in 
that case, you can avoid sharing memory between different tasks so each task has its own 
copy of the data to work with safely. You can do this with algorithmic improvements, 
good design models, proper data structures, or synchronization-independent classes.

Recap
• Concurrency is not an easy concept, and when developers implement 

concurrency in their applications, they may encounter various problems. A few of 
the most common are as follows:

 – Careless use of synchronization primitives can lead to deadlocks. During a 
deadlock, several tasks are waiting for resources occupied by the others, and 
none of them can continue execution.

 – A situation similar to deadlock occurs in livelock, another frequent 
concurrency implementation problem. Livelock is a situation where a request 
for an exclusive lock is repeatedly rejected because there are multiple 
overlapping locks that keep interfering with each other. Tasks keep running 
but don’t complete their work.

 – An application thread can also experience starvation, where it never gets CPU 
time or access to shared resources because other “greedy” threads hog the 
resources. Tasks are starved, never receiving resources, and, in turn, their 
work does not get done. Starvation can be caused by errors in the scheduling 
algorithm or use of synchronization.

• Concurrency is not a new field, so many common design problems have already 
been solved and have become best practices or design patterns that need to be 
learned. Some of the best known are the producer-consumer problem and the 
readers-writer problem. They can be solved most efficiently with the use of 
semaphores and mutexes.





Picture this: You’re at a pizza restaurant, and you see the chef (of course, the 
octopus) working in the kitchen, preparing several pizzas at once. The chef 
is moving swiftly, with tentacles flowing in perfect harmony, and you can’t 
help but marvel at their multitasking abilities: from dough tossing to sauce 
spreading and toppings sprinkling. But how does the restaurant handle 
dozens, or even hundreds, of orders at the same time? The answer lies in its 
use of asynchronous communication!

As we enter the final part of this book on concurrency, we turn our attention 
to a different breed of octopus: the asynchronous ones. Just like their synchro-
nous counterparts, these creatures are experts at multitasking and juggling 
multiple tasks simultaneously. But what sets them apart is their ability to do so 
without blocking and waiting for one task to finish before starting the next.

In Chapters 10 through 13, we explore the world of nonblocking I/O, 
event-based concurrency, and asynchronous communication through the 
lens of a pizza joint. We show you how different approaches to concurrency 
can affect the speed and efficiency of your application and how to write 
concurrent applications that can handle high volumes of requests. 

But don’t worry as you navigate the various techniques and approaches 
to handling concurrency. You’ll start to see the bigger picture—much like 
an orchestra conductor bringing together all the different instruments to 
create a harmonious symphony.

So grab your tentacles—er, I mean, grab a slice of pizza, and let’s dive in!

Part 3  
Asynchronous octopuses: 

A pizza-making tale of 
concurrency
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As processor speeds have historically increased, allowing for the execution 
of more operations in a given time, I/O speeds have struggled to keep up. 
Applications today heavily rely on I/O rather than CPU operations, result-
ing in longer durations for tasks such as writing to the hard disk or reading 
from the network, compared to CPU operations. Consequently, the proces-
sor remains idle while waiting to complete I/O, preventing the application 
from performing other tasks. This limitation creates a significant bottle-
neck for high-performance applications.

In this chapter, we explore a potential solution to this problem by delving 
into message-passing interprocess communication (IPC). We use our 

In this chapter

• You learn about message-passing interprocess 

communication in a distributed network of 

computers

• You learn about client-server applications

• You learn the limits on using multiple threads or 

processes in I/O operations

• You learn about nonblocking operations and how they 

can help hide I/O-bound operations

10Nonblocking I/O
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current understanding of the thread-based model and examine its application in high-
load I/O scenarios, focusing on its popular use in web server development. Web servers 
are an excellent example for demonstrating asynchronous programming functions and 
the underlying concepts that empower developers to fully utilize concurrency for such 
tasks. We further enhance this approach in subsequent chapters.

The distributed world
Concurrency has long gone beyond a single computer. The internet and the World Wide 
Web have become the backbone of modern life, and modern technology makes it possi-
ble to connect hundreds or thousands of distributed computers. This has led to the emer-
gence of distributed systems and distributed computing. Tasks in such systems can run 
on the same computer or different computers in the same local network or geographi-
cally distant from each other. All of this is based on different interrelated technologies, 
the most important of which is message-passing IPC (introduced in Chapter 5). 

In this context, the component is a task on a single machine; the resources are all the 
hardware components of the computer and the individual functions delegated to a given 
computational node. Data is stored in the memory of the application process, and com-
munication between nodes occurs through specialized protocols over the network. The 
most common design for communication between such nodes is the client-server model.

Client-server model
This model has two kinds of processes: clients and servers. Server applications provide 
services to client applications. A client initiates communication by connecting to the 
server. Then a client can request a service by sending a message to the server. The server 
repeatedly receives service requests from clients, performs the service, and (if necessary) 
returns a completion message to the client. Finally, the client disconnects.

Many network applications work this way: web browsers are clients for web servers, an 
e-mail program is a client for an e-mail server, and so on. The client and server can com-
municate via network sockets.
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Network sockets

We talked about the concept of sockets when we discussed message-passing IPC in 
Chapter 5, but in this case, we are talking about a different type of sockets: network sock-
ets. Network sockets are the same as UNIX domain sockets, but they are used to send 
messages over a network. A network can be a logical network, the local network of a 
computer, or a network physically connected to an outside network with its own connec-
tions to other networks. The obvious example is the internet.

There are different types of network sockets, but in this chapter, we focus on TCP/IP 
sockets. This kind of socket guarantees data delivery and is therefore the most popular. 
With TCP/IP sockets, a connection is established. This means two processes must agree 
before information can be sent between them. Both processes maintain this connection 
throughout the communication session.

The network socket is an abstraction used by the OS to communicate with the network. 
For developers, it represents the end point of this connection. The socket takes care of 
reading and writing data to/from the network and then sends data to the network. Every 
socket contains two important things: an IP address and a port.

IP addresses

Each device (host) connected to the network has a unique identifier. This unique identi-
fier is represented as an IP address. IP addresses (version 4) have a common format: a set 
of four numbers separated by dots, such as 8.8.8.8. Using the IP address, we can connect 
a socket to a specific host anywhere on the network, including printers, cash registers, 
refrigerators, servers, mainframes, PCs, and so on.

In many ways, IP addresses are similar to the mailing address of a house on a street. 
A street may have a name, such as 5th Avenue, and there may be several houses on it. 
Each house has a unique number; thus, 175 5th Avenue is uniquely different from 350 5th 
Avenue by house number.

Ports

To accommodate multiple server applications on a single machine that clients wish to 
connect to, a mechanism is required to route traffic from the same network interface to 
different applications. This is achieved through the use of multiple ports on each machine.
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Each port serves as an entry point for a specific application, actively listening for 
incoming requests. The server process is bound to a particular port and remains in a 
listening state, ready to handle client connections. Clients, in turn, need to be aware of 
the port number on which the server is listening to establish a connection.

Certain well-known ports are reserved for system-level processes and serve as stan-
dard ports for specific services. These reserved ports provide a consistent and recogniz-
able means for clients to connect to the corresponding services. Think of offices in a 
business center: each business has its own facility where it provides services.

Both client and server have their own socket connected to the other socket. The server 
socket listens on a specific port, and the client socket connects to the server socket on 
that port. Once a connection is established, the data exchange begins. This is similar to 
a business center where business A has its own office, and clients connect to that office 
to receive services. 

The sender process puts the information it needs into a message and sends the mes-
sage explicitly over the network to the receiver socket; the receiver process then reads it 
as we described regarding UDS sockets (Chapter 5). The processes in this exchange can 
be executed on the same machine or different machines connected by a network.

We use the server implementation as a good exercise and a concrete example to help us 
understand how concurrency has evolved and the new challenges it presents. We do not 
go much deeper into the network model and protocol stack for this communication. 
Networking and sockets are big topics, and volumes have been written about them. If 
you are new to sockets or networking, it is normal to feel overwhelmed by all the terms 
and details. If you want to dive deep into the topic, you can find more in the book Modern 
Operating Systems by Andrew Tanenbaum.1

Now that you have a basic understanding of network sockets and client-server com-
munication, you are ready to build your first server. We start with the simplest, sequen-
tial version and later modify this implementation to see how and why the transition from 
concurrency to asynchrony has happened.

1  Andrew S. Tanenbaum, Modern Operating Systems, 4th ed., Pearson Education, 2015.
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Pizza-ordering service
In the 1980s, the Santa Cruz Operation (which did more to create the internet than Al 
Gore) ordered a lot of pizza for developers from a particular pizza parlor in downtown 
Santa Cruz, California. The process of ordering on the phone took too long, so the devel-
opers created the world’s first commerce app in which they could order and pay for pizza 
by communicating between their terminals and another terminal they set up at the pizza 
parlor. That was back in the era of dumb terminals connected via a wide area network 
rather than personal computers. Today, the process is a bit more complicated. Let’s take 
a moment to replicate that effort with more modern technology. We will implement a 
pizza-ordering service for our local pizza joint: a server that accepts pizza orders from 
clients and responds with a “Thank you for ordering” message.

A server application must provide a server socket for clients to connect to. We do this by 
binding the server socket to an IP address and port on the server machine. The server 
application must then listen for incoming connections:

# Chapter 10/pizza_server.py

from socket import socket, create_server

BUFFER_SIZE = 1024   

Sets the maximum 
amount of data to be 
received at once

ADDRESS = (“127.0.0.1”, 12345) 

class Server:

    def __init__(self) -> None:

        try:

            print(f”Starting up at: {ADDRESS}”)

Defines the address and 
port of the host machine
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            self.server_socket: socket = create_server(ADDRESS) 

        except OSError:

            self.server_socket.close()

            print(“\nServer stopped.”)

    def accept(self) -> socket:

        conn, client_address = self.server_socket.accept() 

        print(f”Connected to {client_address}”)

        return conn

    def serve(self, conn: socket) -> None:

        try:

            while True:

                data = conn.recv(BUFFER_SIZE) 

                if not data: 

                    break

                try:

                    order = int(data.decode())

                    response = f”Thank you for ordering {order} pizzas!\n”

                except ValueError:

                    response = “Wrong number of pizzas, please try again\n”

                print(f”Sending message to {conn.getpeername()}”)

                conn.send(response.encode()) 

        finally:

            print(f”Connection with {conn.getpeername()} has been closed”)

            conn.close() 

    def start(self) -> None:

        print(“Server listening for incoming connections”)

        try: 

            while True: 

                conn = self.accept() 

                self.serve(conn) 

        finally: 

            self.server_socket.close() 

            print(“\nServer stopped.”) 

if __name__ == “__main__”:

    server = Server()

    server.start()

Creates a server socket 
object bound to the 
specified address

Blocks until a client connects to 
the server socket and returns a 

new connection and the socket 
for that client. 

Continuously receives data 
from the client socket until 
there is incoming data

Sends a response 
to the client socket

Closes the client socket after the serve method 
has finished executing for that client

Accepts incoming connections 
and serves each client until 
the server is stopped
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Here we use the local computer address 127.0.0.1 (our local machine) and port 12345. We 
bind our socket to this host and port with a create_server() call. It allows the server 
to accept incoming client connections. The accept() method waits for a client connec-
tion, and the server waits at this point until it receives an incoming client connection. 

When the client connects, it returns a new socket object representing the connec-
tion and client address. When this happens, the server socket creates a new socket that 
will be used to communicate with the client. That’s it. Now we have established a connec-
tion with the client and can communicate with it. The server is ready.

Now we can start the server:

$ python pizza_server.py

When we run this command, our terminal hangs because the server is blocked on the 
accept() call—it is waiting for a new client to connect.

We are using Netcat (http://netcat.sourceforge.net) as a client (alternatively, you can 
use Chapter 10/pizza_client.py). To run the client, open another terminal window and 
start the client as follows on UNIX/macOS:

$ nc 127.0.0.1 12345

NOTE In Windows, use ncat: $ ncat 127.0.0.1 12345.

Once it’s running, we can start typing messages—pizza orders. If the server works, we’ll 
see a response from the server

$ nc 127.0.0.1 12345

10

Thank you for ordering 10 pizzas!

and the server output:

Starting up on: 127.0.0.1:12345

Server listening for incoming connections 

Connected to (‘127.0.0.1’, 52856)

Sending message to (‘127.0.0.1’, 52856)

Connection with (‘127.0.0.1’, 52856) has been closed

The server listens for incoming connections; when a client connects, the server commu-
nicates with it until the connection is closed (close the client to close the connection). It 
then continues to listen for new connections. Take a moment to study this code.

Our server is working—the client can now order pizzas with it! But there is a problem 
in the implementation that we’ve missed.

http://netcat.sourceforge.net/
https://nmap.org/
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A need for concurrency

Similar to the Santa Cruz Operation, this version of the server is not concurrent. When 
several clients try to connect to the server at about the same time, one client connects 
and occupies the server while other clients wait for the current client to disconnect. In 
the previous code, the server is essentially blocked by a single client connection! 

Try it yourself: try running a new client in a separate terminal. You will notice that the 
second client’s connection remains pending until the first client terminates its connec-
tion. This lack of concurrency hampers the server’s ability to handle multiple client con-
nections concurrently.

In a real web application, however, concurrency is unavoidable: multiple clients and 
multiple servers are networked together, simultaneously sending and receiving messages 
and waiting for timely responses. Thus, a web application is also inherently a concurrent 
system requiring concurrent approaches. Consequently, concurrency is not only a fea-
ture of the web architecture but also a necessary and decisive principle for implementing 
large-scale web applications to maximize the use of hardware. 
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Threaded pizza server

One standard solution is to use threads or processes. As we discussed earlier, threads are 
generally more lightweight, so we use them for the implementation:

# Chapter 10/threaded_pizza_server.py 

from socket import socket, create_server

from threading import Thread

BUFFER_SIZE = 1024

ADDRESS = (“127.0.0.1”, 12345)

class Handler(Thread):

    def __init__(self, conn: socket):

        super().__init__()

        self.conn = conn

    def run(self) -> None:

        print(f”Connected to {self.conn.getpeername()}”)

        try:

            while True:

                data = self.conn.recv(BUFFER_SIZE)

                if not data:

                    break

                try:

                    order = int(data.decode())

                    response = f”Thank you for ordering {order} 

pizzas!\n”

                except ValueError:

                    response = “Wrong number of pizzas, please try 

again\n”

                print(f”Sending message to {self.conn.getpeername()}”)

                self.conn.send(response.encode())

        finally:

            print(f”Connection with {self.conn.getpeername()} “

                  f”has been closed”)

            self.conn.close()

class Server:

    def __init__(self) -> None:

        try:

            print(f”Starting up at: {ADDRESS}”)

            self.server_socket = create_server(ADDRESS)



188 Chapter 10  I  Nonblocking I/O

        except OSError:

            self.server_socket.close()

            print(“\nServer stopped.”)

    def start(self) -> None:

        print(“Server listening for incoming connections”)

        try:

            while True: 

                conn, address = self.server_socket.accept() 

                print(f”Client connection request from {address}”) 

                thread = Handler(conn) 

                thread.start() 

        finally:

            self.server_socket.close()

            print(“\nServer stopped.”)

if __name__ == “__main__”:

    server = Server()

    server.start()

In this implementation, the main thread contains a listening server socket that accepts 
incoming connections from clients. Each client connecting to the server is handled in a 
separate thread. The server creates another thread that communicates with the client. 
The rest of the code remains unchanged.

Concurrency is achieved by using multiple threads. The OS overlaps multiple threads 
with preemptive scheduling. We already know this approach; it leads to a simple pro-
gramming model because all the threads needed to process the requests can be written 
consistently. Moreover, it provides a simple abstraction, freeing the developer from low-
level scheduling details. Instead, the developer can rely on the OS and the execution 
environment. 

NOTE This approach is used in many technologies, such as the popular 
Apache web server MPM Prefork module, servlets in Jakarta EE (< version 3), 
the Spring Framework (< version 5), Ruby on Rails’ Phusion Passenger, Python 
Flask, and many others. 

The threaded server we’ve described seems to solve the problem of serving multiple cli-
ents perfectly, but at a price.

For each client, when a client 
connection request is received, 

a new thread is created to 
handle the connection.
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C10k problem

A modern server application processes hundreds, thousands, or tens of thousands of 
client requests (threads) concurrently, waiting for timely responses. Although threads 
are relatively cheap to create and manage, the OS spends significant time, precious RAM 
space, and other resources managing them. For small tasks such as processing single 
requests, the overhead associated with thread management may outweigh the benefits of 
concurrent execution.

NOTE Many OSs have trouble handling more than a few thousand threads, 
usually much less. You can try your machine with the code from Chapter 10/
thread_cost.py.

The OS constantly shares CPU time with all threads, regardless of whether a thread is 
ready to continue execution. For example, a thread may be waiting for data on a socket, 
but the OS scheduler may switch to that thread and back a thousand times before any 
useful work is done. Responding to thousands of connection requests simultaneously 
using multiple threads or processes takes up a significant amount of system resources, 
reducing responsiveness.

Recall the preemptive scheduler from Chapter 6, which pulls up the CPU core for a 
thread. This may require a short wait time if the machine is heavily loaded. After that, 
the thread usually uses the time allocated to it and returns to the Ready state to wait for 
new portions of CPU time. 

Now imagine that you define the scheduler period as 10 milliseconds, and you have 
two threads; each thread gets 5 milliseconds separately. If you have five threads, each 
thread will get 2 milliseconds. But what happens if you have 1,000 threads? You give each 
thread a time slice of 10 microseconds. In that case, the threads will spend a lot of time 
switching contexts and won’t be able to do any real work.

You need to limit the length of the time slice. In the latter scenario, if the minimum 
time slice is 2 milliseconds and there are 1,000 threads, the scheduler cycle needs to be 
increased to 2 seconds. If there are 10,000 threads, the scheduler cycle is 20 seconds.

In this simple example, if each thread uses its full time slice, it will take 20 seconds for 
all threads to run concurrently. That’s too long.
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Context-switching threads takes precious CPU time. The more threads we have, the 
more time we spend switching instead of doing actual work. Thus, the overhead of start-
ing and stopping threads can become quite high.

With a high level of concurrency (say, 10,000 threads, if you can configure the OS to 
create that many threads), having many threrads can affect throughput due to the fre-
quent context-switching overhead. This is a scalability problem, specifically named the 
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C10k problem,2 which prevents servers from handling more than 10,000 simultaneous 
connections. 

NOTE As technology has evolved from that time, this problem has been 
extended to C10m: that is, how to support 10 million simultaneous connections 
or handle 1 million connections per second.

With threads, unfortunately, we can’t solve the C10k problem. To solve it, we need to 
change our approach. But first, let’s understand why we need threads in the first place: 
we need them to handle blocking operations.

Blocking I/O
When we wait for data from I/O, we get a delayed response. This delay can be small when 
requesting a file on a hard disk and longer when requesting data from the network 
because the data has to travel a greater distance to the calling party. For example, a file 
stored on a hard disk must reach the CPU through SATA cables and motherboard buses; 
data from a network resource located on a remote server must travel through miles of 
network cables, routers, and eventually the network interface card (NIC) in our com-
puter to the CPU. This means the application is blocked until the I/O system call is com-
plete. The calling application is in a state where it is not using the CPU and is just waiting 
for a response, so it is inefficient from a processing standpoint. And the more I/O oper-
ations, the more we run into the same problem discussed—the processor becomes idle 
and doesn’t do any real work.

NOTE Any input/output operation is inherently sequential—sending a 
signal and waiting for a response. Nothing is concurrent in this process, so 
Amdahl’s law (discussed in Chapter 2) is in full force here.

An example

Let’s say that instead of ordering, you decide to make pizza at home. To cook it, you place 
sauce, cheese, pepperoni, and olives on the dough (pineapple on pizza is forbidden in our 
house). You put the pizza in the oven and wait for the cheese to melt and the dough to 
brown. Nothing else is required of you; from this point on, the oven takes care of the 
cooking. All you have to do is wait for the right moment to take the pizza out of the oven. 

2 Daniel Kegel, “The C10K problem,” http://www.kegel.com/c10k.html.

http://www.kegel.com/c10k.html
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So, you place a chair in front of the oven, take a seat, and keep a vigilant eye on the pizza, 
ensuring you don’t miss the critical moment just before it starts to burn.

In this approach, you can’t do anything else since most of your time is spent waiting in 
front of the oven. It is a synchronized task; you are “in sync” with the oven. You have to 
wait and be there until the moment the oven finishes with the pizza.

Similarly, traditional send() and recv() socket calls are blocking in nature. If there 
is no message to receive, recv() system calls block the program until it receives the 
data. It just gets a chair, sits down, and waits for the client to send the data.

Unless otherwise specified, almost all I/O interfaces (including network socket inter-
faces) are blocking. For conventional desktop applications, I/O-bound operations are 
usually an occasional task. For web servers, I/O is the primary task, and it turns out the 
server doesn’t use the CPU while it’s waiting for a response from the client. This commu-
nication is very inefficient because it is blocking.
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OS optimization

Why would we use the CPU to just sit and wait for a request? When a task is blocked, the 
OS puts it in a Blocked state until the I/O operation completes. To make efficient use of 
physical resources, the OS immediately “parks” the blocked task, removing it from the 
CPU core and storing it in the system, while another Ready task is allocated CPU time. 
As soon as the I/O is complete, the task exits the Blocked state and goes to the Ready state 
and possibly to the Running state if the OS scheduler decides so.

If a program is CPU-bound, context switching will become a performance nightmare, 
as we’ve seen. Since a computational task always has something to do, it doesn’t need to 
wait for anything; context switching stops that useful work from getting done.

If a program has a lot of I/O-bound operations, context switching is an advantage. As 
soon as a task goes into a Blocked state, another task in a Ready state takes its place. This 
allows the processor to stay busy if work (tasks in the Ready state) needs to be done. This 
situation is fundamentally different from what happens with CPU-bound tasks.
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So, if a function is blocked (for whatever reason), it can delay other tasks, and the overall 
progress of the entire system may suffer. If a function is blocked because it’s performing 
a CPU task, there’s not much we can do. But if it is blocked because of I/O, we know that 
the CPU is idle and can be used to perform another task that needs the CPU.

Blocking occurs in all concurrent programs, not only in I/O (interaction in and out of a 
process, possibly over a network, writing/reading to/from a file, with a user at the com-
mand line or GUI, etc.). Concurrent modules do not work synchronously like sequential 
programs. They usually have to wait for each other when coordinated actions are required.

Now imagine that we can create an operation that will not be blocked.

Nonblocking I/O
Recalling Chapter 6, it is possible to achieve concurrency without any parallelism. This 
can be handy when dealing with a large number of I/O-bound tasks. We can abandon 
thread-based concurrency to achieve more scalability, avoiding the C10k problem with 
nonblocking I/O.

The idea of nonblocking I/O is to request an I/O operation and not wait for a response 
so we can move on to other tasks. For example, with a nonblocking read, we can request 
data over a network socket while the execution thread is doing other things (such as 
working with another connection) until the data is placed in buffers, ready to be con-
sumed. The disadvantage is that we need to periodically ask whether the data is ready to 
be read.

Since one of the problems with previous implementations was that each thread had to 
block and wait for the I/O to return with data, let’s use another socket access mechanism: 
nonblocking sockets. All the blocking socket calls can be put into nonblocking mode.

Going back to the pizza cooking analogy, this time you don’t constantly monitor the 
pizza. Instead, you periodically go over to the oven and “ask” it whether the pizza is 
ready—turn on the light in the oven, and check whether the pizza is done.



 Nonblocking I/O 195

The same with sockets—by putting a socket in nonblocking mode, we can effectively 
poll it. The consequence of nonblocking is that the I/O command cannot be executed 
immediately—if we try to read data from a nonblocking socket and there is no data, it 
will return an error (depending on the implementation, it may return a special values 
such as EWOULDBLOCK or EAGAIN). The simplest nonblocking approach is to create an 
infinite loop by repeatedly calling I/O operations on the same socket. If any I/O opera-
tions are marked as complete, we process them. This approach is called busy-waiting.

In Python’s nonblocking implementation, when calling send(), recv(), or accept(), 
if the device has no data to read, it raises a BlockingIOError exception instead of 
blocking the execution. This indicates that it should have been blocked here, and the 
caller should try to repeat the operation in the future. 

We can also remove the creation of new threads; they don’t give us any particular 
advantage in the nonblocking I/O approach. On the contrary, they only consume more 
RAM and waste time by context switching. Here’s an example implementation:

# Chapter 10/pizza_busy_wait.py

import typing as T

from socket import socket, create_server

BUFFER_SIZE = 1024

ADDRESS = (“127.0.0.1”, 12345)

class Server:

    clients: T.Set[socket] = set()
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    def __init__(self) -> None:

        try:

            print(f”Starting up at: {ADDRESS}”)

            self.server_socket = create_server(ADDRESS)

            self.server_socket.setblocking(False) 

        except OSError:

            self.server_socket.close()

            print(“\nServer stopped.”)

    def accept(self) -> None:

        try:

            conn, address = self.server_socket.accept()

            print(f”Connected to {address}”)

            conn.setblocking(False) 

            self.clients.add(conn)

        except BlockingIOError: 

            pass

    def serve(self, conn: socket) -> None:

        try:

            while True:

                data = conn.recv(BUFFER_SIZE)

                if not data:

                    break

                try:

                    order = int(data.decode())

                    response = f”Thank you for ordering {order} 

pizzas!\n”

                except ValueError:

                    response = “Wrong number of pizzas, please try 

again\n”

                print(f”Sending message to {conn.getpeername()}”)

                conn.send(response.encode())

        except BlockingIOError: 

            pass

    def start(self) -> None:

        print(“Server listening for incoming connections”)

        try:

            while True:

                self.accept()

                for conn in self.clients.copy():

                    self.serve(conn)

Sets the server socket to nonblocking 
mode so it doesn’t block while waiting 

for incoming connections

This exception is caught to 
handle nonblocking sockets when 
no data is available to read from 

the socket. This allows the 
program to avoid blocking and 
instead continue execution for 

other clients with data  
available to be read.
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        finally:

            self.server_socket.close()

            print(“\nServer stopped.”)

if __name__ == “__main__”:

    server = Server()

    server.start()

In this server implementation, we make the socket nonblocking by calling setblock-
ing(False), so the server application will never wait for the operation to complete. 
Then, for each nonblocking socket, we try to perform accept(), read(), and send() 
operations in an endless while loop—a polling loop. The polling loop should keep try-
ing to perform the operations again and again because they are no longer blocking—
during send(), we don’t know if the socket is ready—we have to keep trying until the 
attempt is successful. The same is true for the other calls. Thus send(), recv(), and 
accept() calls can pass control back to the main thread without doing anything.

NOTE It is a common misconception that nonblocking I/O results in faster 
I/O operations. Although nonblocking I/O does not block the task, it does not 
necessarily execute faster. Instead, it enables the application to perform other 
tasks while waiting for I/O operations to complete. This allows for better 
utilization of processing time and efficient handling of multiple connections, 
ultimately enhancing overall performance. Nonetheless, the speed of the I/O 
operation is primarily determined by hardware and network performance 
characteristics, and nonblocking I/O does not affect these factors.

Since there is no blocking I/O, multiple I/O operations overlap, even if a single thread is 
used. This creates the illusion of parallelism because multiple tasks run concurrently 
(similar to how it was done in Chapter 6).

Using nonblocking I/O in the right situation hides latency and improves our applica-
tion’s throughput and/or responsiveness. It also allows us to work with a single thread, 
potentially saving us from synchronization problems between threads and the costs of 
thread management and associated system resources.
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Recap
• In client-server applications interacting via message-passing IPC, concurrency is 

unavoidable: multiple clients and servers are networked together, simultaneously 
sending and receiving messages and waiting for timely responses.

• When I/O-bound code runs in a program, the processor often spends a lot of 
time doing nothing because the only thing currently running is waiting for I/O 
to complete.

• Blocking interfaces do all their work before returning to the calling party; 
nonblocking interfaces start some work but return immediately, thus allowing 
other work to be done. In workloads with more I/O work than CPU work, the 
efficiency gains from nonblocking I/O are much higher, as expected.

• OS threads (especially processes) are suitable for a small number of long-running 
tasks, since the use of a large number of threads is limited by increasing 
performance degradation due to constant context switching and memory 
consumption related to the thread stack size. One simple approach to overcome 
the costly creation of threads or processes is to use the busy-waiting approach, 
where, with a single thread, we can concurrently process multiple client requests, 
using nonblocking operations.



199

Concurrency is a critical aspect of modern software development, allowing 
applications to perform multiple tasks simultaneously and maximize hard-
ware utilization. While traditional thread/process-based concurrency is a 
well-known technique, it is not always the best approach for every applica-
tion. In fact, for high-load I/O-bound applications, event-based concur-
rency is often a more effective solution.

Event-based concurrency involves organizing an application around 
events or messages rather than threads or processes. When an event occurs, 
the application responds by invoking a handler function, which performs 
the necessary processing. This approach has several advantages over tradi-
tional concurrency models, including lower resource usage, better scalabil-
ity, and improved responsiveness.

In this chapter

• You learn how to overcome the difficulties of the 

inefficient busy-waiting approach from Chapter 10

• You learn more about synchronization  

in message-passing IPC

• You learn about event-based concurrency

• You learn the reactor design pattern

11Event-based 
concurrency
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Real-world examples of event-based concurrency can often be found in many high- 
performance applications, such as web servers, messaging systems, and gaming plat-
forms. For instance, a web server can use event-based concurrency to handle a large 
number of simultaneous connections with minimal resource consumption, while a mes-
saging system can use it to efficiently process a high volume of messages.

In this chapter, we explore event-based concurrency in more detail, comparing it with 
traditional thread/process-based concurrency and discussing its most popular use in 
client-server applications. We examine the benefits and drawbacks of event-based con-
currency and discuss how to design and implement event-driven applications effectively. 
By the end of this chapter, you will have a solid understanding of event-based concur-
rency and its applications, allowing you to choose the right approach for your projects.

Events
Looking back at our pizza cooking analogy from Chapter 10, we can see that using the 
busy-waiting approach to cook pizza is inefficient and tedious. This approach requires 
constantly polling all sockets, regardless of their state. If we have 10,000 sockets, and 
only the last socket is ready to send/receive data, we may go through them all only to find 
a message waiting impatiently on the last one. The CPU constantly runs as we poll each 
socket to check its status. This means 99% of our CPU time is spent polling rather than 
executing other CPU-bound tasks, which is inefficient.

We need an efficient mechanism. We need event-based concurrency.
What we want to know is when the pizza will be ready, right? Why don’t we just set a 

timer to notify us when the pizza is cooked? That way, we can do something else while 
waiting for the event. When the timer notifies 
us that the pizza is ready, we can process the 
event and eat that hot, fresh pizza.

Event-based concurrency focuses on 
events. We simply wait for something to hap-
pen—that is, an event. It may be an I/O event, 
such as data ready to consume or a socket 
ready for writing, or any other event, such as 
the timer trigger. When it happens, we check 
what type of event it is and do a small amount 
of work processing that event (which can 
include executing I/O requests, scheduling 
other events, etc.).
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NOTE User interfaces are almost always designed as event-driven programs 
because their purpose is to respond to user actions. For example, JavaScript has 
historically been used to interact with the document object model (DOM) and 
with the user in the browser, so an event-driven programming model is natural 
for this language. But this style has also become popular in some modern 
systems, including server-side frameworks such as Node.js. Another example of 
event-based concurrency is the React.js library, commonly used for building 
user interfaces. React.js uses a virtual DOM and event handlers to update the 
user interface in response to user input or other events rather than updating the 
DOM directly. This approach allows React.js to minimize the number of DOM 
updates and improve performance by batching updates together.

Callbacks
In an event-driven program, we need to specify the code that will be run when each 
event occurs. This code is called a callback.

Callback translates as “Call me back,” and the principle of callbacks is similar to the 
order of a phone callback. Imagine that you call an operator to order a pizza, but an 
answering machine responds with a pleasant voice that asks you to either stay on the line 
until the operator is free or request a callback. If you request a callback, when the opera-
tor is free, they call you back and take your order. Instead of waiting for an operator to 
answer, you can request a callback and do other things. Once the callback happens, you 
can do what you set out to do and order a pizza.
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NOTE Callback-based code often makes the control flow less obvious and 
more difficult to debug. We no longer have clean and readable code. We used 
to be able to read the code sequentially, but now we need to spread the logic 
across multiple callbacks. This chain of operations in the code can cause a 
series of nested callbacks, also known as callback hell. 

Now we have events, and we have callbacks. How do we make them work together? 
Event-based concurrency depends on an event loop.

Event loop
Combining different events and callbacks to these events means introducing a con-
trolling entity that tracks different events and runs their appropriate callbacks. Such an 
entity is usually called an event loop.

Instead of polling for events as we did in the busy-waiting implementation, events are 
queued as they arrive in an event queue. The event loop waits for events, continuously 
retrieves them from the queue, and invokes the appropriate callback.

The following diagram shows an example of a typical flow that an event-oriented 
program executes. The event loop continuously fetches events from the event queue and 
makes appropriate callbacks. Although this diagram shows only one specific event 
mapped to one callback, it should be noted that in some event-driven applications, the 
number of events and callbacks could theoretically be infinite.

Essentially, all the event loop does is wait for events to occur, map each event to a call-
back we have registered in advance, and run this callback.

http://callbackhell.com/
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NOTE The event loop is the heart and soul of JavaScript. In JavaScript, we 
are not allowed to create new threads. Instead, concurrency in JavaScript is 
achieved through the mechanism of event loops. This is how JavaScript can 
bridge the gap between multithreading and concurrency, making JavaScript a 
serious contender in an arena filled with concurrent languages such as Java, 
Go, Python, Rust, and so on. Many GUI toolkits, such as Java Swing, also 
have an event loop.

Let’s try to implement the same idea in code: 

# Chapter 11/event_loop.py

from collections import deque

from time import sleep

import typing as T

class Event:    

The Event class represents 
an action to be executed 
by the event loop.

    def __init__(self, name: str, action: T.Callable[..., None], 

                 next_event: T.Optional[Event] = None) -> None: 

        self.name = name 

        self._action = action

        self._next_event = next_event 

    def execute_action(self) -> None:

        self._action(self)

        if self._next_event:

            event_loop.register_event(self._next_event)

class EventLoop:

    def __init__(self) -> None:

        self._events: deque[Event] = deque() 

    def register_event(self, event: Event) -> None:

        self._events.append(event) 

    def run_forever(self) -> None:

        print(f”Queue running with {len(self._events)} events”)

        while True: 

            try: 

                event = self._events.popleft() 

            except IndexError: 

                continue 

            event.execute_action() 

Creates a queue to store events 
to be executed by the event loop

Adds an event to 
the event queue

Runs the event loop 
forever, executing 
each event in the 
queue as it becomes 
available
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def knock(event: Event) -> None:

    print(event.name)

    sleep(1)

def who(event: Event) -> None:

    print(event.name)

    sleep(1)

if __name__ == “__main__”:

    event_loop = EventLoop()

    replying = Event(“Who’s there?”, who)

    knocking = Event(“Knock-knock”, knock, replying)

    for _ in range(2): 

        event_loop.register_event(knocking) 

    event_loop.run_forever() 

Here, we create an event loop and register two events: knock and who (note that the 
knock event can produce a who event). Then we manually generate two knock events 
as though they just happened and started the infinite execution of the event loop. We see 
that the event loop executes them one after the other:

Queue running with 2 events
Knock-knock
Knock-knock
Who’s there?
Who’s there?

Ultimately, the flow of the application depends on events. But how can the server know 
which event it should process next?

I/O multiplexing
Modern OSs typically include event notification subsystems, commonly called I/O mul-
tiplexing. These subsystems collect and queue I/O events from monitored resources and 
block them until the user application is available to process them. This allows the user 
application to perform a simple check for incoming I/O events that require attention.

Registers with event loop callbacks 
that represent actions to be executed 
when events with the corresponding 
names are triggered

Starts the event loop and runs it indefinitely until interrupted, 
continuously checking the event queue for new events to execute
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Using I/O multiplexing, we don’t need to keep track of all the socket events as we did 
in the previous chapter using the busy-waiting approach. We can rely on the OS to tell us 
what events happen on which sockets. The application can ask the OS to monitor the 
socket and queue the events until the data is ready. The application can check for events 
at any time, perhaps doing something else in the meantime. This mechanism is provided 
by the granddad of system calls: select.

When we use a select system call, we don’t make any socket calls on a given socket 
until the select tells us that something has happened on that socket: for example, data 
has arrived and is ready to be read. However, the biggest advantage of I/O multiplexing 
is that we can process multiple socket I/O requests concurrently using the same thread. 
We can register multiple sockets and wait for incoming events from all of them.

If sockets are ready when select is called, it returns control to the event loop imme-
diately. Otherwise, it is blocked until some of the registered sockets are ready. When a 
new read event arrives or a socket is available for writing, select returns new events, 
places these new events in the event queue, and returns control to the event loop. This 
way, the application can receive new requests while processing a previous request. This 
ensures that the processing of the previous request is not blocked, but control can be 
quickly returned to the event loop to process the new request.

NOTE Many OSs provide a more efficient interface for event notification: 
POSIX provides poll, Linux has epoll, FreeBSD and macOS use kqueue, 
Windows has IOCP, Solaris has /dev/poll, and so on. These basic primitives 
allow us to build a nonblocking event loop that simply checks incoming 
packets, reads socket messages, and responds as needed.

By using I/O multiplexing, we concurrently perform several I/O operations with differ-
ent sockets using the same execution thread without constantly polling for incoming 
events. Instead, the OS manages incoming events, notifying the application only when 
necessary. It is still blocking with the select system call, but it does not waste time 
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waiting for data to arrive or waste CPU time in the constant event-polling loop, as we see 
in the busy-waiting approach.

Event-driven pizza server
We are now ready to implement a single-threaded concurrent version of the pizza server 
using I/O multiplexing! The core of the program is again the event loop—an infinite 
loop that, at each iteration, gets ready to read/write sockets from the select system call 
and invokes the corresponding registered callbacks:

# Chapter 11/pizza_reactor.py

class EventLoop:

    def __init__(self) -> None:

        self.writers = {} 

        self.readers = {} 

    def register_event(self, source: socket, event: Mask,

                       action: Action) -> None:

        key = source.fileno() 

        if event & select.POLLIN: 

            self.readers[key] = (source, event, action) 

        elif event & select.POLLOUT: 

            self.writers[key] = (source, event, action)

    def unregister_event(self, source: socket) -> None:

        key = source.fileno() 

        if self.readers.get(key): 

            del self.readers[key]

        if self.writers.get(key): 

            del self.writers[key]

    def run_forever(self) -> None:

        while True: 

            readers, writers, _ = select.select( 

                self.readers, self.writers, []) 

            for reader in readers: 

                source, event, action = self.readers.pop(reader) 

                action(source) 

Keeps track of sockets that are ready 
for either write or read I/O operations

Gets a unique 
identifier associated 
with the socket

Indicates that data is 
available to be read 
from the socket

Indicates that the 
socket is ready to 
write data

Removes the socket 
from the readers  
and/or writers when 
the client closes the 
connection

Runs an infinite loop, waiting for 
sockets in readers or writers to 

become ready for I/O using select
For each read-ready socket, the 
corresponding action is executed, and then 
the socket is removed from the readers.
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            for writer in writers: 

                source, event, action = self.writers.pop(writer)

                action, msg = action 

                action(source, msg)

Inside the run_forever method of the event loop, we call the select system call, 
waiting for it to tell us when clients have new events to process. This is a blocking opera-
tion, which means the event loop does not run inefficiently. It waits for at least one event 
to happen. select tells us when the socket is ready to read/write, and we call the corre-
sponding callback.

We need to encapsulate sending and receiving data into independent functions (call-
backs, for each of the expected event types) _on_accept(), _on_read(), and _on_
write(). Then we let the OS monitor the state of the client sockets instead of our 
application. All we need to do is register all client sockets with all expected events with 
corresponding callbacks. That’s exactly what we do inside the Server class:

# Chapter 11/pizza_reactor.py

class Server:

    def __init__(self, event_loop: EventLoop) -> None:

        self.event_loop = event_loop

        try:

            print(f”Starting up at: {ADDRESS}”)

            self.server_socket = create_server(ADDRESS)

            self.server_socket.setblocking(False)

        except OSError:

            self.server_socket.close()

            print(“\nServer stopped.”)

    def _on_accept(self, _: socket) -> None: 

        try: 

            conn, client_address = self.server_socket.accept() 

        except BlockingIOError: 

            return 

        conn.setblocking(False) 

        print(f”Connected to {client_address}”) 

        self.event_loop.register_event(conn, select.POLLIN, self._on_read) 

        self.event_loop.register_event(self.server_socket, select.POLLIN,

                                      self._on_accept)

For each write-ready socket, the corresponding action is 
executed, and then the socket is removed from the writers.

Callback that is 
called when a new 

client connects to 
the server; it 
registers the 

connection with the 
event loop to 

monitor for 
incoming data.
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    def _on_read(self, conn: socket) -> None: 

        try: 

            data = conn.recv(BUFFER_SIZE) 

        except BlockingIOError: 

            return 

        if not data: 

            self.event_loop.unregister_event(conn)

            print(f”Connection with {conn.getpeername()} has been closed”) 

            conn.close() 

            return 

        message = data.decode().strip() 

        self.event_loop.register_event(conn, select.POLLOUT, 

                                       (self._on_write, message)) 

    def _on_write(self, conn: socket, message: bytes) -> None: 

        try: 

            order = int(message) 

            response = f”Thank you for ordering {order} pizzas!\n” 

        except ValueError: 

            response = “Wrong number of pizzas, please try again\n” 

        print(f”Sending message to {conn.getpeername()}”) 

        try: 

            conn.send(response.encode()) 

        except BlockingIOError: 

            return 

        self.event_loop.register_event(conn, select.POLLIN, self._on_read)

    def start(self) -> None: 

        print(“Server listening for incoming connections”)

        self.event_loop.register_event(self.server_socket, select.POLLIN,

                                       self._on_accept) 

if __name__ == “__main__”:

    event_loop = EventLoop()

    Server(event_loop= event_loop).start()

    event_loop.run_forever()

Callback that is called when data is 
received from a client connection Callback that is called when a response 

is ready to be sent to the client

Starts the server by registering 
the server socket with the 
event loop and setting the 

callback function for accepting 
new client connections
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In this implementation, we start by creating a server socket, similar to the previous 
approach. However, instead of monolithic code, we represent the application as a set of 
callbacks, each of which handles a specific type of event request. Once these compo-
nents are set up, we initiate the server to listen for incoming connections. 

The core of the implementation lies in the event loop, which handles events from 
the event queue and invokes the corresponding event handlers. The event loop trans-
fers control to the appropriate callback function and resumes control once the call-
back has finished executing. This process continues as long as there are pending 
events in the event queue. When all events have been processed, the event loop 
returns control to the select function, which becomes blocked again, waiting for 
new operations to complete.

By implementing this event-driven architecture and utilizing the event loop, we suc-
cessfully address the challenge of handling multiple clients concurrently by running the 
event loop within a single thread. Hooray!

Reactor pattern
This use of the event loop, which waits for events to happen and then processes them, is 
so common that it has achieved the status of a design pattern: the reactor pattern. By 
executing a single-threaded event loop using I/O multiplexing to handle nonblocking 
I/O and employing appropriate callbacks, we effectively employ the reactor pattern.

The reactor pattern handles incoming requests that arrive in the application from one 
or more clients. Here, an application is represented by callbacks, each responsible for 
processing event-specific requests. For the reactor pattern, we need several components: 
event sources, event handlers, a synchronous event demultiplexer, and a reactor 
structure.

Event sources are entities that generate events, such as files, sockets, timers, or syn-
chronization objects. Our pizza server code has two event sources: the server socket and 
the client sockets.

Event handlers, which are essentially callback functions, are responsible for process-
ing requests from specific event sources. In our code, we have three types of event handlers:

• _on_accept—Handles the server socket and accepts a new connection

• _on_read—Handles a new message from the client connection

• _on_write—Handles writing messages to the client connection

Synchronous event demultiplexer is a fancy name for getting events from an event notifi-
cation mechanism provided by the OS, such as select or any of its flavors. It waits for 
specific events to occur on a set of handles.
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The reactor, aka the event loop, is the one who runs the show. It registers callbacks for 
specific events and responds to events by passing the work to the appropriate registered 
event handler or callback. In our code, the EventLoop class serves as the reactor, as it 
waits for events and “reacts” to them. When the select call returns a list of resources 
ready for I/O operations, the reactor calls the corresponding registered callbacks.

In summary, an application following the reactor pattern registers event sources and 
event types it is interested in. For each event, it provides a corresponding event handler, 
which is a callback. The synchronous event demultiplexer waits for events and notifies 
the reactor, which then invokes the appropriate event handler to handle the event.

NOTE A lot of popular core libraries and frameworks have been built on the 
ideas we outline here. Libevent is a widely used, long-standing cross-platform 
event library; libuv (an abstraction layer on top of libeio, libev, 
c-ares, and iocp) implements low-level I/O in Node.js, Java NIO, NGINX, 
and Vert.x using nonblocking models with an event loop implementation to 
achieve a high level of concurrency.
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The reactor pattern allows for an event-driven concurrency model, avoiding the over-
head of creating and managing system threads, context switching, and complexities 
associated with shared memory and locks in traditional thread-based models. By utiliz-
ing events for concurrency, resource consumption is significantly reduced, as only one 
execution thread is employed. However, it requires a different programming style that 
involves callbacks and handling events that occur later.

To sum up, the reactor pattern targets synchronous processing of events but asyn-
chronous I/O processing and relies on the OS event notification system. As we’ve touched 
on the concept of synchronization, let’s talk more about it.

Synchronization in message passing
Synchronization in message passing refers to the coordination and sequencing of tasks 
that rely on a specific order of execution. When tasks are synchronized, they run in 
order, and subsequent tasks must wait for the completion of preceding tasks before pro-
ceeding. It’s important to note that synchronization refers to the start and end points of 
tasks rather than their actual execution.

Synchronous communication requires both parties to be ready to exchange data at the 
same time, creating an explicit synchronization point for both tasks. This approach 
blocks program execution until the communication is completed, leaving system 
resources idle. In contrast, asynchronous communication occurs when the caller initi-
ates a task and does not wait for it to complete but moves on. Asynchronous communi-
cation does not require synchronization when sending and receiving, and the sender is 
not blocked until the receiver is ready. The calling application accesses the results asyn-
chronously and can check for events at any convenient time. This approach allows the 
processor to spend time processing other tasks instead of waiting.



212 Chapter 11  I  Event-based concurrency

To illustrate the difference between synchronous and 
asynchronous communication, think of how different peo-
ple use mobile phones. During a call, while one person is 
talking, the other person is listening. When the first person 
finishes talking, the second person usually answers right 
away. Until the second person answers, the first person 
waits for an answer. This means the first person cannot 
continue until the second person has finished. 

In this example, the first person’s end point is synchro-
nized with the second person’s start point. However, while 
this provides immediate satisfaction to both participants, it 
takes longer to conclude a conversation because the average 
person can consume 10 times more information while 
reading as opposed to listening. That’s one reason texting 
has become so popular among younger people.

Text messaging represents an asynchronous method of 
communication. One person can send a message, and the recipient can reply at their 
convenience. In the meantime, the sender can perform other tasks while waiting for  
a response.
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In programming, asynchronous communication occurs when the caller initiates a task 
and does not wait for it to complete but moves on (like an inattentive partner). It does not 
require synchronization when sending and receiving: the sender is not blocked until the 
receiver is ready. If it cares about the results (or partner) provided by such a task, it must 
have a way to get them (by providing a callback or in any other way). Regardless of which 
method is used, we say that the calling application accesses the results asynchronously. 
The application can check for events at any convenient time, perhaps by running other 
tasks in the meantime (or coming up with the answer to a loaded question like “How 
much do you love me?”). This is an asynchronous process since the application expresses 
interest at one point and uses data at another point.

Asynchronous tasks don’t have synchronized start and end points. Instead of waiting, 
the CPU time spent in synchronous communication is utilized for processing other 
tasks. Thus, the processor is never left idle when there is work to be done.

All asynchronous I/O operations boil down to the same pattern. It’s not about how the 
code is executed but where the waiting occurs. Multiple I/O operations can combine their 
waiting efforts so that the waiting occurs at the same place in the code. When an event occurs, 
the asynchronous system must resume the part of the code that was waiting for that event.

Asynchronous messaging decouples the communication between entities and allows 
senders to send messages without waiting for recipients. In particular, no synchroniza-
tion is required for messaging between senders and receivers, and both entities can work 
independently. With multiple recipients, the advantage of asynchronous messaging 
becomes even more apparent. It would be very inefficient to wait until all message recip-
ients are ready to communicate simultaneously or even to send a message synchronously 
to one recipient at a time.

I/O models
The terms blocking/synchronous and nonblocking/asynchronous are often used inter-
changeably. But even though they describe similar concepts, they are different—they are 
used at different levels with different meanings. We distinguish them, at least to describe 
I/O operations:

• Blocking vs. nonblocking—Using these properties, an application can tell the OS 
how to access the device. When using blocking mode, the I/O operation does not 
return to the caller until the operation completes. In nonblocking mode, all calls 
are returned immediately but only show the state of the operation. Thus, it may 
take several calls to ensure that the operation has been completed successfully.

• Synchronous vs. asynchronous—These properties describe the high-level flow of 
control during an I/O operation. A synchronous call retains control because it does 
not return until the operation completes, thus making a synchronization point. An 
asynchronous call returns immediately, allowing further operations to be performed.
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Combining these properties gives four different models of I/O operations. Each of them 
has different uses that are advantageous for certain applications.

Synchronous blocking model

This is the most common model of operation for many typical applications. In this model, 
an application in the user space makes a system call that causes the application to block. 
The application is blocked until the system call (data transfer or error) completes. 

Synchronous nonblocking model

In this model, the application accesses the I/O device in nonblocking mode. This causes 
the OS to immediately return the I/O call. Normally, the device is not yet ready, and the 
response to the call indicates that the call should be repeated later. By doing so, applica-
tion code often implements busy-waiting behavior, which is highly inefficient. Once the 
I/O operations are complete and the data is available in the user space, the application 
can continue to work and use the data.

Asynchronous blocking model

An example of this model is a reactor pattern. Surprisingly, the asynchronous blocking 
model still uses nonblocking mode for I/O operations. However, instead of busy-wait, a 
special blocking system call, select, is used to send a notification about the I/O status. 
However, it blocks just the notification, not the I/O call. If this notification mechanism 
is reliable and performant, it is a good model for highly performant I/O.

Asynchronous nonblocking model

Finally, in the asynchronous nonblocking I/O model, an I/O request is returned imme-
diately, indicating that the operation was successfully initiated. The application performs 
other operations while the background operation completes. When the response arrives, 
a signal or callback can be generated to complete the I/O operation. 

An interesting feature of this model is that there is no blocking or waiting at the user 
level. The whole operation is moved elsewhere (to the OS or a device). This allows the appli-
cation to take advantage of the extra processor time while I/O operations occur in the 
background. Not surprisingly, this model also performs well with high performance I/O.

These models describe I/O operations in OSs at a low level only. From a more abstract, 
developer point of view, the application framework can provide I/O access using syn-
chronous blocking through background threads but provide an asynchronous interface 
for developers using callbacks and vice versa.
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NOTE Asynchronous I/O (AIO) in Linux is a relatively recent addition to 
the Linux kernel. The basic idea behind AIO is to allow a process to initiate a 
series of I/O operations without having to block or wait for any operation to 
complete. Later, or after receiving an I/O completion notification, the process 
can retrieve the I/O results. We get a notification that the socket can be read 
or written without a lock. We then perform an I/O operation that is not 
blocked. Windows uses the completion notification model (I/O completion 
ports [IOCPs]).

Recap
• Event-based concurrency is more suitable for high-load I/O applications because it 

provides better scalability with higher concurrency. Such applications require less 
memory, even if they handle thousands of simultaneous connections.

• Synchronous communication refers to tasks that run in order and depend on that 
order. It blocks program execution for the duration of data exchange, leaving 
system resources idle. In synchronous communication, both parties must be 
ready to exchange data at the same time, and the application is blocked until the 
communication is completed.

• Asynchronous communication occurs when the caller initiates a task and does 
not wait for it to complete but moves on. It does not require synchronization 
when sending and receiving, and the sender is not blocked until the receiver is 
ready. Asynchronous communication allows the CPU time spent waiting in 
synchronous communication to be spent processing other tasks instead. The 
application can check for events at any convenient time, and asynchronous tasks 
do not have synchronized start and end points.

• The reactor pattern is the most popular pattern for implementing event-based 
concurrency for handling I/O-bound applications. Simply put, it uses a single-
threaded event loop and nonblocking events, and it sends those events to the 
appropriate callbacks.
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People are impatient by nature and want systems to respond immediately. 
But this is not always necessary. In many programming scenarios, we can 
postpone processing or move it elsewhere so that it happens asynchronously. 
When we do this, we reduce the latency constraints on systems that have to 
run in real time. Part of the goal of moving to asynchronous operations is 
to reduce the workload, but it’s not always a simple step.

In this chapter

• You learn about asynchronous communication and 

when to use an asynchronous model

• You learn the difference between preemptive and 

cooperative multitasking

• You learn how to implement an asynchronous system 

using cooperative multitasking via coroutines and 

futures

• You learn to combine event-based concurrency and 

concurrency primitives to implement an 

asynchronous system that efficiently runs I/O and 

CPU tasks

12Asynchronous 
communication
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For example, there is a popular steakhouse in San Jose, California, called Henry’s 
Hi-Life, which has been an institution in the city since 1950. It is popular but has limited 
space, so it has developed an innovative, asynchronous method for moving patrons 
through quickly without making them feel rushed.

Diners enter through a small dive bar and are greeted by a host at a podium at the back 
of the bar. The diner tells the host how many are in their party, and the host hands them 
the number of menus needed. Patrons can then grab a drink at the bar while they make 
their choices, which are written on a checklist with any special requests and then handed 
to the host. The order is taken directly to the kitchen, and as soon as it is ready, the host 
guides the diners to their table; before they can put napkins in their laps, the food is 
delivered piping hot (no microwaves allowed). 

This process reduces the latency constraints on the kitchen, improves the overall din-
ing experience for customers, and maximizes revenue for the restaurant. Implementing 
asynchronous systems can improve the performance and scalability of a system, even in 
scenarios where people are accustomed to immediate service.

In this chapter, we learn how to implement asynchronous systems by borrowing the 
“event loop plus callback” model described in Chapter 11 and turning it into its own 
implementation. We take an in-depth look at coroutines and futures, popular abstrac-
tions for implementing asynchronous calls. And we look at when to use the asynchro-
nous model and present examples to help you better understand this computer science 
term and the scenarios for which it is useful.

A need for asynchrony
At first glance, the event-based approach to programming seems like a great solution. 
With a simple event loop, events are handled as they occur. However, a significant prob-
lem arises when an event requires a system call that could be blocked, such as a CPU-
bound operation. This problem is compounded by the fact that instead of a single, 
cohesive codebase, the application is represented as a collection of callbacks, each respon-
sible for a specific type of event request. This approach sacrifices readability and 
maintainability.

When it comes to servers that use threads or processes, this problem is easily solved. 
While one thread is busy with a blocking operation, other threads can run in parallel, 
enabling the server to continue functioning. The OS handles the scheduling of threads 
on available CPU cores.

However, in the event-based approach, there is only a main thread with an event loop 
that listens for events. This means no operation should block execution, as doing so 
would result in the entire system being blocked. As a result, asynchronous programming 
techniques must be used to ensure that operations do not block the event loop and that 
the system remains responsive.
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Asynchronous procedure calls
By default, in most programming languages, when a method is invoked, it is executed syn-
chronously. This means the code runs sequentially, and control is not returned to the envi-
ronment until the entire method completes. However, this can become problematic when 
the method takes a long time to execute, such as a network call or long-running computa-
tion. In such cases, the calling thread becomes blocked until the method finishes. When 
this is undesirable, you can start a worker thread and call the method from it; but in most 
cases, it is not worth an additional thread with its complexities and overhead.

Let’s imagine a very inefficient example. You arrive at the front desk of a hospital to 
check in for a procedure. If this were done with synchronous communication, the recep-
tionist would require you to stand at the counter for as long as you needed to fill out 
multiple forms while the receptionist just sat and waited for you. You’d be in the way of 
them serving other patients. The only way to scale this approach would be to hire more 
receptionists and make room for them. Doing so would be costly and inefficient, as the 
receptionists would be doing nothing most of the time. Fortunately, that is not the way it 
is done.

Generally, medical facilities are asynchronous systems. When you walk up to a counter 
and find out you need to fill out additional forms, the receptionist hands you the forms, 
a clipboard, and a pen and tells you to come back when you’ve finished. You sit down to 
fill out the forms while the receptionist helps the next person in line. You do not block a 
receptionist from serving others. When you finish, you go back to the line and wait to 
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talk to the receptionist again. If you’ve done something wrong or need to fill out another 
form, they give you a new form or tell you what needs fixing, and you repeat the process: 
sit, do your work, and then get back in line. This system already scales well. If the queue 
gets too long, the facility can add another receptionist, making it even more scalable.

A sequential programming model can be extended to support concurrency by over-
loading synchronous calls with asynchronous semantics. The call does not create a syn-
chronization point; instead, the runtime scheduler passes the results to the handler later 
or asynchronously. A synchronous call with asynchronous semantics added is called an 
asynchronous call or asynchronous procedure call (APC). APC augments a potentially 
long-running (synchronous) method with an asynchronous version that returns imme-
diately and with additional methods that make it easy to get a completion notification or 
wait for completion at a later time.

Several software constructs and operations that make up the asynchronous structure 
have emerged in the programming world. Perhaps one of the most widely used is coop-
erative multitasking.

Cooperative multitasking
According to the Oxford English Dictionary, a-syn-chro-nous means “of or requiring a 
form of computer control timing protocol in which a particular operation begins upon 
receiving an indication (signal) that the preceding operation has been completed.” It is 
clear from the definition that the main problem is not how and where operations take 
place but how to restart this or that part of the code after the event completion.

Up to this point, when we’ve talked about threads, threads that relate one-to-one to 
system-level threads are managed by the OS itself. But we can also have logical threads at 
the user or application level; these are threads managed by developers. The OS knows 
nothing about user-level threads. It treats applications utilizing user-level threads as if 
they were single-threaded processes. User-level threads usually form the simplest kind of 
multitasking: cooperative multitasking, also known as non-preemptive multitasking.

In cooperative multitasking, the OS never initiates context switching. Instead, each 
task decides when to hand over control to the scheduler, allowing other tasks to run by 
explicitly saying to the scheduler, “I’m pausing my work for a while; please keep running 
other tasks.” The scheduler’s job is only to assign tasks to available processing resources. 
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Thus, we have only one worker thread, and no other thread can replace the currently 
running thread. The system is called cooperative multitasking because, to be successful, 
the developer and the runtime environment work together in harmony to make the most 
of the available processing resources.

NOTE This simple approach has found its way into all versions of macOS up 
to macOS X, and Windows up to Windows 95 and Windows NT.

Since there is only one execution thread, but multiple tasks need to be completed, there 
is the problem of resource sharing. In this case, thread management is the resource that 
needs to be shared. But the cooperative scheduler cannot take control away from the 
executing task unless the task itself gives it.

Coroutines (user-level threads)

In our threaded server implementation (Chapter 10), the OS threads do not impose  
control-transfer responsibility on us: they provide concurrency even if we have only one 
processor core. The key here is the OS’s ability to pause and resume thread execution 
using preemptive multitasking (Chapter 6). If we could have functions capable of paus-
ing and resuming execution like OS threads, we could write concurrent single-threaded 
code. Guess what? We can do it with coroutines!

Coroutines are a programming construct that allows for cooperative multitasking, 
where a single thread of execution can be paused and resumed at specific points in the 
code. This approach offers several advantages, including more efficient and flexible code 
capable of handling asynchronous tasks without explicit threading.
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The key difference between coroutines and OS threads is that coroutine switching is 
cooperative rather than preemptive. This means the developer, along with the program-
ming language and its execution environment, has control over when the switch between 
coroutines occurs. At the right moment, a coroutine can be paused, allowing another 
task to start executing instead.

Coroutines are particularly useful in scenarios where certain operations are expected to 
block for a significant duration, such as network requests. Instead of involving the sys-
tem scheduler, coroutines allow immediate switching to another task. This cooperative 
nature of coroutines enables developers to write code that is more elegant, readable, and 
reusable.

NOTE The core idea of coroutines came out of work called continuations. 
Continuations can be thought of as a snapshot of the program’s execution 
context at a specific point in time, including the current call stack, local 
variables, and other relevant information. By capturing this information, 
continuations enable a program to save its execution state and resume it later, 
potentially on a different thread or even a different machine. 

To illustrate the usefulness of coroutines, let’s consider an example of generating the 
Fibonacci sequence. The following Python code showcases an elegant and readable 
implementation using coroutines, highlighting the concept’s benefits in terms of ele-
gance, readability, and code reuse:
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# Chapter 12/coroutine.py

from collections import deque

import typing as T

Coroutine = T.Generator[None, None, int]

class EventLoop:

    def __init__(self) -> None:

        self.tasks: T.Deque[Coroutine] = deque()

    def add_coroutine(self, task: Coroutine) -> None: 

        self.tasks.append(task)   

    def run_coroutine(self, task: Coroutine) -> None:

        try:

            task.send(None) 

            self.add_coroutine(task)

        except StopIteration: 

            print(“Task completed”)

    def run_forever(self) -> None: 

        while self.tasks: 

            print(“Event loop cycle.”) 

            self.run_coroutine(self.tasks.popleft()) 

def fibonacci(n: int) -> Coroutine:

    a, b = 0, 1

    for i in range(n):

        a, b = b, a + b

        print(f”Fibonacci({i}): {a}”)

        yield  

    return a

if __name__ == “__main__”:

    event_loop = EventLoop()

    event_loop.add_coroutine(fibonacci(5)) 

    event_loop.run_forever()

Contains the 
list of all the 
coroutines to 
be executed

Adds a new 
coroutine task to 
the event loop 
for the execution

Executes the coroutine 
until it reaches the next 
yield statement

An exception is raised 
when a coroutine has 
completed its execution 
and returned a value.

Enters a loop that executes coroutines 
from the event loop’s deque object 

until none remain

Temporarily pauses the 
execution of the function 
and allows other coroutines 
to be executed

Returns the final value 
computed by the function after 
it has completed execution
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The output of the program is as follows:

Event loop cycle.

Fibonacci(0): 1

Event loop cycle.

Fibonacci(1): 1

Event loop cycle.

Fibonacci(2): 2

Event loop cycle.

Fibonacci(3): 3

Event loop cycle.

Fibonacci(4): 5

Event loop cycle.

Task completed

In this code, we introduce a simple event loop and a coroutine. We call the coroutine just 
like a regular function, but it executes instructions until it reaches a pause point marked 
by the yield instruction. This special instruction temporarily halts the current func-
tion execution, returns control to the caller, and preserves the current instruction stack 
and pointer in memory, effectively saving the execution context. Consequently, the event 
loop remains unblocked by a single task and executes the next task while waiting for the 
awaited event to occur. Once the event is complete, the event loop resumes execution 
from the exact line it paused on.

Over time, the main thread can invoke the same coroutine again, and it will start 
execution not from the beginning but from the last pause point. Therefore, a coroutine is 
a partially executed function that, under appropriate conditions, can be resumed at some 
point in the future until it completes.
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In our code example, the Fibonacci() coroutine pauses and returns control to the 
event loop, which then waits and pauses with a resume marker. Upon resumption, the 
fibonacci coroutine yields the result, and the event loop then resumes execution, 
passing the yielded value to the appropriate destination.

By employing coroutines and an event loop, we achieve cooperative multitasking, 
where tasks can be efficiently scheduled and executed without relying on multiple 
threads or processes. Coroutines allow us to write concurrent code with improved con-
trol flow, making it easier to handle asynchronous tasks and optimize resource 
utilization.

NOTE Fibers, light threads, and green threads are other names for coroutines 
or coroutine-like concepts. Sometimes they may look (usually on purpose) 
like OS threads, but they don’t run like real threads; instead, they run 
coroutines. Depending on the language or implementation, there may be 
more specific technical features or differences between these concepts: Python 
(generator-based and native coroutines), Scala (coroutines), Go (goroutines), 
Erlang (Erlang processes), Elixir (Elixir processes), Haskell GHC (Haskell 
threads), and many others.

Cooperative multitasking benefits 

Cooperative multitasking offers several advantages over preemptive multitasking, mak-
ing it a desirable approach in certain scenarios.

Uses fewer resources

User-level threads are less resource intensive. Context switching occurs when the OS 
needs to switch between threads or processes. System threads are relatively heavyweight, 
and context switching between system threads results in significant overhead. In con-
trast, user-level threads are lighter in both aspects. With cooperative scheduling, because 
tasks maintain their own lifecycles, the scheduler does not need to monitor the state of 
each task, so task switching is cheaper: switching tasks is not much more expensive than 
calling a function. This makes it possible to create millions of coroutines without signif-
icant management overhead. Applications with this approach usually boast scalability 
even while being single-threaded (in the OS sense).

Avoids blocking shared resources

With cooperative multitasking, tasks can switch between themselves at specific points in 
the code, mitigating the problems of blocking shared resources. By carefully choosing 
these switch points, we ensure that tasks never interrupt each other in the middle of 
critical sections.
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Greater efficiency

Context switching in cooperative multitasking is more efficient because the task knows 
when to pause and pass control to another task. But this requires the task to be tremen-
dously aware that it is not working alone—other tasks are waiting, and it decides when 
to hand over control. We need only one centralized sequence of operations to lose every-
thing (see the mall example in Chapter 2). 

The scheduler can’t make global decisions about how long tasks should run. That’s 
why in cooperative multitasking, it’s important not to run long operations—or, if we do, 
to periodically return control. When multiple programs do small chunks of work and 
voluntarily switch between each other, we can achieve a level of concurrency that no 
scheduler can achieve. Now we can have thousands of coroutines working together 
instead of dozens of threads.

But preemptive multitasking and cooperative multitasking are not mutually exclusive; 
they are often used in the same systems at different levels of abstraction. For example, a 
cooperative computation may be periodically preempted to provide a fairer distribution 
of CPU time.

Future objects
Imagine that you go to a burger joint. There you place an order for a fancy burger for 
lunch. The cashier says something to the cook in the kitchen to let them know to make 
your burger. The cashier gives you your order number and a promise that your burger 
will be cooked and you’ll get it sometime in the future. You will receive your order once 
your order number is displayed at the counter, indicating that the cook has finished pre-
paring it. While you wait, you pick a table, and you sit and mind your own business. But 
if there is no callback method, how do you know when the burger is ready? In other 
words, how do you get the result of an asynchronous call?

As the return value of an asynchronous call, we can make an object that guarantees a 
future result (expected result or error). This object is returned as a “promise” of a future 
result: a placeholder object for the result that is initially unknown because the computa-
tion of its value is not yet complete. Once the result is obtained, we can put it inside the 
placeholder object. Such objects are called future objects. 

Future objects can be thought of as results that will eventually become available. They 
also act as a synchronization mechanism because they allow us to send independent com-
putations but be synchronized with the source control and eventually return the result.

NOTE Future, promise, delay, and deferred generally refer to roughly the same 
synchronization mechanism in different programming languages, where the 
object acts as a proxy for an as-yet-unknown result. When a result becomes 
available, the waiting code is executed. Over the years, these terms have come to 
have slightly different meanings in different languages and ecosystems.
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Back to your burger order. From time to time, you check the number on the counter to 
see if your order is ready. At some point, it’s finally ready for pickup. You walk over to the 
counter, grab your burger, return to the table, and enjoy your meal.

In code, it looks like this: 

# Chapter 12/future_burger.py

from __future__ import annotations

import typing as T

from collections import deque

from random import randint

Result = T.Any

Burger = Result

Coroutine = T.Callable[[], ‘Future’]
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class Future:

    def __init__(self) -> None:

        self.done = False

        self.coroutine = None

        self.result = None

    def set_coroutine(self, coroutine: Coroutine) -> None: 

        self.coroutine = coroutine

    def set_result(self, result: Result) -> None: 

        self.done = True

        self.result = result

    def __iter__(self) -> Future:

        return self

    def __next__(self) -> Result: 

        if not self.done: 

            raise StopIteration

        return self.result

class EventLoop:

    def __init__(self) -> None:

        self.tasks: T.Deque[Coroutine] = deque()

    def add_coroutine(self, coroutine: Coroutine) -> None:

        self.tasks.append(coroutine)

    def run_coroutine(self, task: T.Callable) -> None:

        future = task() 

        future.set_coroutine(task) 

        try: 

            next(future) 

            if not future.done: 

                future.set_coroutine(task) 

                self.add_coroutine(task) 

        except StopIteration: 

            return

    def run_forever(self) -> None:

        while self.tasks:

            self.run_coroutine(self.tasks.popleft())

Sets the coroutine 
associated with the 

Future object

Sets the Future as 
done, and assigns 
the computation 
result to the object

Checks whether the Future 
is done, and returns the 
result if it is

Runs a coroutine by calling 
it, creating a Future 
object, and executing its 
coroutine. If the future is 
not done, adds the 
coroutine to the task 
queue to be executed 
again later.
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def cook(on_done: T.Callable[[Burger], None]) -> None: 

    burger: str = f”Burger #{randint(1, 10)}” 

    print(f”{burger} is cooked!”) 

    on_done(burger) 

def cashier(burger: Burger, on_done: T.Callable[[Burger], None]) -> None:

    print(“Burger is ready for pick up!”) 

    on_done(burger) 

def order_burger() -> Future:

    order = Future() 

    def on_cook_done(burger: Burger) -> None:

        cashier(burger, on_cashier_done)

    def on_cashier_done(burger: Burger) -> None:

        print(f”{burger}? That’s me! Mmmmmm!”)

        order.set_result(burger)

    cook(on_cook_done) 

    return order

if __name__ == “__main__”:

    event_loop = EventLoop()

    event_loop.add_coroutine(order_burger)

    event_loop.run_forever()

The program consists of calling the cook coroutine, in which the chef cooks the burger 
and then passes the result to the second coroutine—cashier, which informs you that 
the burger is ready. Each coroutine returns a Future object and returns control to the 
main function. The function pauses until the value is ready and then resumes and com-
pletes its operation. This is what makes coroutines asynchronous.

The Future object describes the idea of separating the computation and its final 
result by providing a proxy entity that returns the result as soon as it becomes available. 
The Future object has a result property that stores future execution results. There is 
also a set_result method, which sets the result after the value is bound to the result.

Cooks a burger, and 
calls the function that 
handles the next step, 
which is the cashier

Notifies the customer that their burger is 
ready for pickup, and calls the function 

that handles the next step

Creates a Future 
object to represent 
the customer’s order

Calls the function to cook the 
burger, and returns the Future 
object. The callbacks passed as 
arguments to the cook and cashier 
functions are called when the 
corresponding operation is done.
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While waiting until the Future object is filled with the result, we can perform other 
computations. This provides a simple way to call an operation that takes a long time to 
execute or can be delayed because of costly operations such as I/O, which can slow down 
other program elements. 

NOTE There is also a related scatter-gather method of I/O. It involves using 
a single procedure call to efficiently read data from multiple buffers and write 
it to a single data stream or vice versa. This technique offers benefits such as 
improved efficiency and convenience. For example, this pattern is particularly 
useful for running multiple independent web requests concurrently. Scattering 
the requests as background tasks and gathering the results through proxy 
entities enables the concurrent processing of operations, similar to how 
promise.all() works in JavaScript. With promise.all(), we can pass 
an array of promises, and it waits for them to resolve before returning the 
results as an array.

If we combine Future objects with the concept of coroutines—functions whose execu-
tion can be paused and then resumed—we can write asynchronous code, which is close 
to sequential code in its form.

Cooperative pizza server
In Chapter 10, we talked about the first e-commerce app developed by the Santa Cruz 
Operation in the 1980s to order pizza for developers. That was a simple synchronous 
approach, but it was limited in scope because of a lack of computing resources. Since 
then, programmers have learned how to run coroutines and have created future imple-
mentations, giving us all the building blocks we need to create an asynchronous server 
via cooperative multitasking.

Event loop

Let’s take a look at our main component—the event loop:

# Chapter 12/asynchronous_pizza/event_loop.py

from collections import deque

import typing as T

import socket

import select
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from future import Future

Action = T.Callable[[socket.socket, T.Any], Future]

Coroutine = T.Generator[T.Any, T.Any, T.Any]

Mask = int

class EventLoop:

    def __init__(self):

        self._numtasks = 0

        self._ready = deque()

        self._read_waiting = {}

        self._write_waiting = {}

    def register_event(self, source: socket.socket, event: Mask, future,

                       task: Action) -> None:

        key = source.fileno()

        if event & select.POLLIN:

            self._read_waiting[key] = (future, task)

        elif event & select.POLLOUT:

            self._write_waiting[key] = (future, task)

    def add_coroutine(self, task: Coroutine) -> None:

        self._ready.append((task, None))

        self._numtasks += 1

    def add_ready(self, task: Coroutine, msg=None):

        self._ready.append((task, msg))

    def run_coroutine(self, task: Coroutine, msg) -> None:

        try:

            future = task.send(msg)

            future.coroutine(self, task)

        except StopIteration:

            self._numtasks -= 1

    def run_forever(self) -> None:

        while self._numtasks:
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            if not self._ready: 

                readers, writers, _ = select.select( 

                    self._read_waiting, self._write_waiting, []) 

                for reader in readers: 

                    future, task = self._read_waiting.pop(reader) 

                    future.coroutine(self, task) 

                for writer in writers: 

                    future, task = self._write_waiting.pop(writer) 

                    future.coroutine(self, task) 

            task, msg = self._ready.popleft() 

            self.run_coroutine(task, msg) 

In addition to the same event notification loop in our main entry point method run_
forever, we run the run_coroutine method for all coroutines ready to run. As 
soon as all the tasks are done (a future is returned and control is given back or the result 
returned), we remove all completed tasks from the task queue. If there are no ready tasks, 
we call select as before, blocking the event loop until some event happens on the client 
sockets we have registered. As soon as that happens, we run the appropriate callbacks 
and start a new iteration of the loop. 

As stated earlier, a cooperative scheduler cannot take control away from the executing 
task, as the event loop cannot interrupt a running coroutine. A running task runs until 
it passes control. The event loop selects the next task and keeps track of the blocked tasks 
that cannot run until I/O is complete, but only when no tasks are currently running.

To implement a cooperative server, we need to implement coroutines for each server 
socket method (accept, send, and recv). There we create a Future object and 
return it to the event loop. We put the result into the future when the desired event has 
been completed. To make it easier to operate, let’s put the asynchronous socket imple-
mentation into a separate class:

# Chapter 12/asynchronous_pizza/async_socket.py

from __future__ import annotations

import select

import typing as T

import socket

Checks if there are any ready coroutines to be executed. If there 
are ready coroutines, executes the next one. If there are none, waits 

until one or more of the registered sockets are ready for I/O 
operations, and then executes the corresponding coroutine(s). 
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from future import Future

Data = bytes

class AsyncSocket:

    def __init__(self, sock: socket.socket):

        self._sock = sock

        self._sock.setblocking(False)

    def recv(self, bufsize: int) -> Future:

        future = Future()

        def handle_yield(loop, task) -> None:

            try:

                data = self._sock.recv(bufsize)

                loop.add_ready(task, data)

            except BlockingIOError:

                loop.register_event(self._sock, select.POLLIN, future, task)

        future.set_coroutine(handle_yield)

        return future

    def send(self, data: Data) -> Future:

        future = Future()

        def handle_yield(loop, task):

            try:

                nsent = self._sock.send(data)

                loop.add_ready(task, nsent)

            except BlockingIOError:

                loop.register_event(self._sock, select.POLLOUT, future, task)

        future.set_coroutine(handle_yield)

        return future

    def accept(self) -> Future:

        future = Future()

        def handle_yield(loop, task):

            try:

                r = self._sock.accept()

                loop.add_ready(task, r)

            except BlockingIOError:

                loop.register_event(self._sock, select.POLLIN, future, task)
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        future.set_coroutine(handle_yield)

        return future

    def close(self) -> Future:

        future = Future()

        def handle_yield(*args):

            self._sock.close()

        future.set_coroutine(handle_yield)

        return future

    def __getattr__(self, name: str) -> T.Any:

        return getattr(self._sock, name)

We make our server socket nonblocking, and in each method, we execute the correspond-
ing operation without waiting for it to complete. We simply release control by returning a 
Future object in which we write the result of the operation later. We have prepared the 
generic boilerplate and are ready to create our cooperative server application.

Cooperative pizza server implementation

Let’s implement our asynchronous server with cooperative multitasking:

# Chapter 12/asynchronous_pizza/cooperative_pizza_server.py

import socket

from async_socket import AsyncSocket

from event_loop import EventLoop

BUFFER_SIZE = 1024

ADDRESS = (“127.0.0.1”, 12345)

class Server:

    def __init__(self, event_loop: EventLoop):

        self.event_loop = event_loop

        print(f”Starting up on: {ADDRESS}”)

        self.server_socket = AsyncSocket(socket.create_server(ADDRESS))

    def start(self):

        print(“Server listening for incoming connections”)

        try:

            while True:

                conn, address = yield self.server_socket.accept() 

                print(f”Connected to {address}”)

Suspends execution until a connection 
request arrives at the server socket. 

When a connection request arrives, 
the accept method returns a new 

socket object for the connection, and 
the method resumes execution.
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                self.event_loop.add_coroutine(

                    self.serve(AsyncSocket(conn)))

        except Exception:

            self.server_socket.close()

            print(“\nServer stopped.”)

    def serve(self, conn: AsyncSocket):

        while True:

            data = yield conn.recv(BUFFER_SIZE) 

            if not data:

                break

            try:

                order = int(data.decode())

                response = f”Thank you for ordering {order} pizzas!\n”

            except ValueError:

                response = “Wrong number of pizzas, please try again\n”

            print(f”Sending message to {conn.getpeername()}”)

            yield conn.send(response.encode()) 

        print(f”Connection with {conn.getpeername()} has been closed”)

        conn.close()

if __name__ == “__main__”:

    event_loop = EventLoop()

    server = Server(event_loop=event_loop)

    event_loop.add_coroutine(server.start())

    event_loop.run_forever()

We follow an approach similar to the previous versions by creating an event loop and 
assigning our server function to it for execution. Once the event loop starts running, 
we run clients and submit orders to the server.

However, in our cooperative multitasking approach, we don’t rely on threads or pro-
cesses that require control transfer, as all execution occurs within a single thread. Instead, 
we manage multiple tasks by transferring control to a central function that coordinates 
these tasks—the event loop.

To sum up, cooperative multitasking significantly reduces CPU and memory over-
head, especially for workloads with a large number of I/O-related tasks such as servers 
and databases. All other things being equal, we can have orders of magnitude more tasks 
than OS threads because the cooperative-multitasking approach uses one expensive 
thread to handle a large number of cheap tasks.

Suspends execution until 
data is received from the 

client. When data is received, 
the method resumes 

execution, and the received 
data is returned.

Suspends execution of the serve 
method until the response can be 
sent back to the client. When the 

response has been sent, the 
method resumes execution.
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Asynchronous pizza joint
For the last two chapters, you’ve probably been thinking, “What kind of pizza joint is this 
if we’re not actually making pizza, but just saying ‘Thanks for ordering’?” Time to put on 
an apron and start the oven!

As you can imagine, making pizza is a lengthy process. Let’s use this Kitchen class 
to simulate the cooking process:

# Chapter 12/asynchronous_pizza/asynchronous_pizza_joint.py

class Kitchen:

    @staticmethod

    def cook_pizza(n):

        print(f”Started cooking {n} pizzas”)

        time.sleep(n) 

        print(f”Fresh {n} pizzas are ready!”)

If we run this in our cooperative server implementation, our server will be busy making 
pizza for one customer for a long time and only then serve other customers! There’s a 
blocking call lurking in a dark corner of our beautiful asynchronous system. Bummer!

We want to continue getting customer orders while making pizza in the background. 
The oven and the order server should not be blocked by each other. Yes, we are going 
back to basics—to threads—but this time, we are using concurrency with asynchronous 
communication. How exciting!

The idea is to create an asynchronous method that returns a future that encapsulates 
a long operation that will complete at some point in the future. Once the job is sent, the 
Future object is returned, and the caller’s execution thread can continue working, sep-
arated from the new computation.

Simulates the 
time required to 
cook n pizzas
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For the implementation, we use the same approach to event notification; we can return a 
Future object that promises the result will arrive sometime in the future:

# Chapter 12/asynchronous_pizza/event_loop_with_pool.py

import socket

from collections import deque

from multiprocessing.pool import ThreadPool

import typing as T

import select

from future import Future

Data = bytes

Action = T.Callable[[socket, T.Any], None]

Mask = int

BUFFER_SIZE = 1024

class Executor:

    def __init__(self):

        self.pool = ThreadPool()   

Uses a thread pool to 
run blocking tasks in 
separate threads

    def execute(self, func, *args):

        future_notify, future_event = socket.socketpair() 

        future_event.setblocking(False) 

        def _execute():

            result = func(*args)

            future_notify.send(result.encode())

        self.pool.apply_async(_execute) 

        return future_event

class EventLoop:

    def __init__(self):

        self._numtasks = 0

        self._ready = deque()

        self._read_waiting = {}

        self._write_waiting = {}

        self.executor = Executor()

Creates a pair of connected sockets 
for interprocess communication. One 

socket is used to send notifications 
about task completion, and the other 

socket is used to wait for those 
notifications.

Submits a function to be executed in a 
worker thread of a thread pool, and 
returns a future event socket to wait 
for notification
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    def register_event(self, source: socket.socket, event: Mask, future,

                       task: Action) -> None:

        key = source.fileno()

        if event & select.POLLIN:

            self._read_waiting[key] = (future, task)

        elif event & select.POLLOUT:

            self._write_waiting[key] = (future, task)

    def add_coroutine(self, task: T.Generator) -> None:

        self._ready.append((task, None))

        self._numtasks += 1

    def add_ready(self, task: T.Generator, msg=None):

        self._ready.append((task, msg))

    def run_coroutine(self, task: T.Generator, msg) -> None:

        try:

            future = task.send(msg)

            future.coroutine(self, task)

        except StopIteration:

            self._numtasks -= 1

    def run_in_executor(self, func, *args) -> Future:

        future_event = self.executor.execute(func, *args)

        future = Future()

        def handle_yield(loop, task): 

            try:

                data = future_event.recv(BUFFER_SIZE) 

                loop.add_ready(task, data) 

            except BlockingIOError: 

                loop.register_event( 

                    future_event, select.POLLIN, future, task) 

        future.set_coroutine(handle_yield)

        return future

    def run_forever(self) -> None:

        while self._numtasks:

            if not self._ready:

                readers, writers, _ = select.select(

                    self._read_waiting, self._write_waiting, [])

                for reader in readers:

                    future, task = self._read_waiting.pop(reader)

                    future.coroutine(self, task)

Runs an operation in the 
Executor, and adds a 

corresponding callback for 
when data becomes available
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                for writer in writers:

                    future, task = self._write_waiting.pop(writer)

                    future.coroutine(self, task)

            task, msg = self._ready.popleft()

            self.run_coroutine(task, msg)

Here we combine the thread pool with the event loop. When we get a CPU-heavy task, we can 
run it inside the thread pool and return a Future object. Once the task is done, an execution 
thread sends a notification that it’s ready, and we can set the result of the Future object.

Finally, our pizza joint server looks like this:

# Chapter 11/asynchronous_pizza_joint.py

import socket

import time

from async_socket import AsyncSocket

from event_loop_with_pool import EventLoop

BUFFER_SIZE = 1024

ADDRESS = (“127.0.0.1”, 12345)

class Server:

    def __init__(self, event_loop: EventLoop):

        self.event_loop = event_loop

        print(f”Starting up on: {ADDRESS}”)

        self.server_socket = AsyncSocket(socket.create_server(ADDRESS))

    def start(self):

        print(“Server listening for incoming connections”)

        try:

            while True:

                conn, address = yield self.server_socket.accept()

                print(f”Connected to {address}”)

                self.event_loop.add_coroutine(

                    self.serve(AsyncSocket(conn)))

        except Exception:

            self.server_socket.close()

            print(“\nServer stopped.”)

    def serve(self, conn: AsyncSocket):

        while True:

            data = yield conn.recv(BUFFER_SIZE)

            if not data:

                break
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            try:

                order = int(data.decode())

                response = f”Thank you for ordering {order} pizzas!\n”

                print(f”Sending message to {conn.getpeername()}”)

                yield conn.send(response.encode())

                yield self.event_loop.run_in_executor( 

                    Kitchen.cook_pizza, order) 

                response = f”Your order of {order} pizzas is ready!\n”

            except ValueError:

                response = “Wrong number of pizzas, please try again\n”

            print(f”Sending message to {conn.getpeername()}”)

            yield conn.send(response.encode())

        print(f”Connection with {conn.getpeername()} has been closed”)

        conn.close()

if __name__ == “__main__”:

    event_loop = EventLoop()

    server = Server(event_loop=event_loop)

    event_loop.add_coroutine(server.start())

    event_loop.run_forever()

Although this implementation is not yet suitable for production use due to various limita-
tions, such as insufficient exception handling and the restriction that only socket events 
can trigger event loop iteration, it provides a glimpse into the mechanics of concurrency 
using asynchronous calls. Using our current knowledge, we can utilize hardware resources 
more efficiently, leading to increased performance. This example serves as a foundation for 
building next-generation asynchronous frameworks in any programming language you 
choose. By employing similar principles and techniques, you can develop more robust and 
scalable systems capable of handling a multitude of tasks concurrently.

NOTE JavaScript is single-threaded, so the only way to achieve multithread-
ing is to run multiple instances of the JavaScript engine. But then how do we 
communicate between these instances? This is where web workers come in. 
They allow tasks to run in a separate thread in the background, isolated from 
the main thread of the web application. This multithreading capability is pro-
vided by the browser container, so not all browsers support web workers yet. 
Node.js is another container for the JavaScript engine, which provides multi-
threading with the OS.

Asynchronous programming is complex, but many complexities can be covered by asyn-
chronous libraries and frameworks. As an example, we can take a look at the same logic, 
but using the built-in Python asyncio library:

Runs a blocking operation in a separate thread to cook pizza 
while continuing to serve other clients
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# Chapter 12/asynchronous_pizza/aio.py

import asyncio

import socket

from asynchronous_pizza_joint import Kitchen

BUFFER_SIZE = 1024

ADDRESS = (“127.0.0.1”, 12345)

class Server:

    def __init__(self, event_loop: asyncio.AbstractEventLoop) -> None:

        self.event_loop = event_loop

        print(f”Starting up at: {ADDRESS}”)

        self.server_socket = socket.create_server(ADDRESS)

        self.server_socket.setblocking(False)

    async def start(self) -> None: 

        print(“Server listening for incoming connections”)

        try:

            while True:

                conn, client_address = \

                    await self.event_loop.sock_accept(

                        self.server_socket) 

                    self.server_socket)

                self.event_loop.create_task(self.serve(conn))

        except Exception:

            self.server_socket.close()

            print(“\nServer stopped.”)

    async def serve(self, conn) -> None: 

        while True:

            data = await self.event_loop.sock_recv(conn, BUFFER_SIZE)

            if not data:

                break

            try:

                order = int(data.decode())

                response = f”Thank you for ordering {order} pizzas!\n”

                print(f”Sending message to {conn.getpeername()}”)

                await self.event_loop.sock_sendall( 

                    conn, f”{response}”.encode())

                await self.event_loop.run_in_executor( 

                    None, Kitchen.cook_pizza, order)

                response = f”Your order of {order} pizzas is ready!\n”

            except ValueError:

                response = “Wrong number of pizzas, please try again\n”

The keyword 
async means 
the function is 
asynchronous.

The keyword await is used to 
wait for a coroutine to complete 
while allowing other tasks to run 

in the meantime.
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            print(f”Sending message to {conn.getpeername()}”)

            await self.event_loop.sock_sendall(conn, response.encode())

        print(f”Connection with {conn.getpeername()} has been closed”)

        conn.close()

if __name__ == “__main__”:

    event_loop = asyncio.get_event_loop()

    server = Server(event_loop=event_loop)

    event_loop.create_task(server.start())

    event_loop.run_forever()

The application code is greatly simplified—all the boilerplate code is gone. Everything 
from sockets to the event loop and concurrency is now hidden under the library calls and 
managed by the library developers.

NOTE This does not mean async/await is the only correct approach to 
communication in concurrent systems. Take as an example the communicating 
sequential processes (CSP) model implemented in Go and Clojure or the actor 
model implemented in Erlang and Akka. However, async/await seems to 
be the best model in Python today.

This was definitely not easy code, so let’s step back and talk about the asynchronous 
model in general.

Conclusions on the asynchronous model
Asynchronous operations generally do not wait for results to be completed. Instead, they 
delegate tasks to other locations, such as devices, threads, processes, or external systems, 
that can handle them independently. This allows the program to continue executing 
other tasks without waiting, and it receives a notification when a delegated task finishes 
or encounters an error.

It’s important to note that asynchrony is a characteristic of an operation call or com-
munication and is not tied to a specific implementation. Various asynchronous mecha-
nisms exist, but they all adhere to the same underlying model. They differ in how they 
structure code to enable pausing when a blocking operation is requested and resuming 
once the operation is complete. This flexibility allows developers to choose the most 
suitable approach for their specific requirements and programming environment.

When should you use an asynchronous model? Asynchronous communication is a 
powerful tool for optimizing a heavily loaded system with frequent blocking system 
calls. But like any complex technology, it should not be used just because it exists. 

The keyword await is used to wait for a coroutine to complete 
while allowing other tasks to run in the meantime.
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Asynchrony adds complexity and makes the code less maintainable. Compared to the 
synchronous model, the asynchronous model works best in the following situations:

• You have a large number of tasks. In that case, there’s probably always at least one 
task that can move forward. Using an asynchronous model often results in faster 
response times and improved overall performance, which can be good for the 
system’s end users.

• The application spends most of its time doing I/O rather than processing. For 
example, you have a lot of slow requests—web sockets, long pooling, or slow 
external synchronous backends for which you don’t know when the requests will 
run out.

• Tasks are largely independent, so there’s no need for intertask communication 
(and therefore no need to wait for one task to run before running another).

These conditions almost perfectly characterize a typical busy server (such as a web 
server) in a client-server system (so the pizza examples make perfect sense). In server- 
side programs, asynchronous communication allows us to efficiently handle massive 
concurrent I/O operations, intelligently utilizing resources during their downtime and 
avoiding the creation of new resources. Server-side implementation is a prime candidate 
for the asynchronous model, which is why Python’s asyncio and JavaScript’s Node.js, 
along with other asynchronous libraries, have become so popular in recent years. Front-
end and UI applications can also benefit from asynchrony because it enhances the flow 
of an application, particularly in high-volume independent I/O tasks.

Recap
• Asynchronous communication is a software development method that enables 

a single process to continue running without being blocked by time-consuming 
tasks such as I/O operations or network requests. Instead of waiting for a task 
to finish before moving on to the next one, an asynchronous program can 
execute other code while the task is being performed in the background. This 
approach optimizes system resources, resulting in improved program 
performance and responsiveness.

• Asynchrony is a property of an operation call or communication, not a specific 
implementation. The asynchronous model allows efficient handling of massive 
concurrent I/O operations, optimizing resource utilization, reducing system 
delay, and increasing scalability and system throughput. But without good 
libraries and frameworks, asynchronous programs may be difficult to write 
and debug.
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• Cooperative multitasking is one method used to implement asynchronous 
systems. It allows multiple tasks to share processing time and CPU resources. In 
cooperative multitasking, tasks must cooperate by yielding control to the system 
once they complete a portion of their work. 

• Compared to preemptive multitasking, cooperative multitasking offers several 
advantages. User-level threads, used in cooperative multitasking, are less 
resource intensive than system threads. This allows for the creation of a large 
number of coroutines without significant management overhead. However, it is 
crucial for tasks to be aware that they are not working alone and must decide 
when to hand over control to other tasks.

• Cooperative multitasking significantly reduces CPU and memory overhead, 
particularly for workloads involving numerous I/O-related tasks like servers and 
databases. By using a small number of threads to handle a large number of tasks, 
cooperative multitasking allows for more efficient utilization of hardware 
resources. This, combined with asynchronous communication, leads to better 
resource utilization.

• Popular abstractions for implementing asynchronous calls are coroutines and 
futures. A coroutine is a function that is partially executed and paused and, under 
appropriate conditions, resumed at some point in the future until its execution is 
complete. A future is a promise of a future result—a proxy object for the result, 
which is initially unknown, usually because the computation of its value is not 
yet complete.
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Throughout this book, we have examined various approaches for imple-
menting concurrent applications and associated problems. Now it’s time to 
apply that knowledge to real-world scenarios. 

In this chapter, we focus on the practical application of concurrent pro-
gramming by introducing a methodical approach to designing concurrent 
systems. We also illustrate this approach through the examination of sam-
ple problems. By the end of this chapter, we will have the knowledge and 
skills needed to methodically design a simple concurrent system and recog-
nize and address any potential flaws that reduce efficiency or scalability. 
But before we begin, let’s take a moment to review the key concepts and 
principles we’ve previously covered on the topic of concurrency.

In this chapter

• You learn about a framework for designing concurrent 

systems illustrated by two sample problems

• We connect all the knowledge we have learned 

together

13Writing concurrent 
applications
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So, what is concurrency?

Concurrency is a big, sometimes dizzying puzzle. Early in the history of computers, pro-
grams were written for sequential computations. To solve a problem in this tradition, an 
algorithm is constructed and implemented as a sequential stream of instructions. These 
instructions are executed on the CPU of a single computer. This is the simplest style of 
programming and a straightforward execution model. Each task is executed in turn, 
with one task completed before the next begins. If the tasks are always executed in a cer-
tain order, then when the subsequent task starts executing, it can be assumed that all 
previous tasks have completed without errors and all their results are available for use—a 
certain simplification of logic. 

Concurrent programming means splitting a program into tasks and running them in 
any order with the same result. That makes concurrency a challenging area of software 
development. Decades of research and practice have led to a wide variety of concurrency 
models with different goals. These models are primarily designed to optimize perfor-
mance, efficiency, correctness, and usability. Depending on the context, concurrency 
units have different terms, such as tasks, coroutines, processes, or threads.

The processing elements can vary and include resources such as a single computer 
with multiple processors, multiple computers connected via a network, specialized hard-
ware, or any combination. The execution process is controlled by the runtime system 
(OS); in a system with multiple processors or multiple cores, it can run in parallel or 
multitask on a single processor core. The point is that the execution details are handled 
by the runtime system, and the developer simply thinks in terms of independent tasks 
that can execute concurrently.
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Now that we have a way to safely run tasks concurrently, we also need a way to coor-
dinate them with shared resources. This is where concurrency causes problems. Tasks 
using old data may make inconsistent updates, systems can deadlock, data in different 
systems may never converge to consistent values, and so on. The order in which tasks 
access shared resources is fully controlled not by the developer but by how tasks are allo-
cated to processors. That is, when each task executes and for how long is decided auto-
matically by the implementation of the programming language in the OS. As a result, 
concurrency errors are very difficult to reproduce but can be avoided by implementing 
proper design practices in our application, minimizing task communication, and 
employing effective synchronization techniques. 

We have a way to safely coordinate tasks, but they often need to communicate with 
one another. Communication between tasks can be synchronous or asynchronous. A syn-
chronous call retains control because it does not return until the operation completes, 
thus making a synchronization point. An asynchronous call asks for something to hap-
pen and then is notified when it does, releasing resources to do other stuff in the mean-
time. In the asynchronous model, a task runs until it explicitly passes control to other 
tasks. Note that we can mix asynchronous and concurrent models and use both in the 
same system. 

Now let’s learn a methodology that will help us create concurrent programs: Foster’s 
methodology.

Foster’s methodology
In 1995, Ian Foster proposed a set of steps for designing concurrent systems, known as 
Foster’s design methodology.1 It is a four-step design process. Let’s walk through the steps 
with an abstract approach, followed by some examples.

Suppose you are planning a road trip with your friends. Your task is to ensure that the 
trip is enjoyable and all necessary arrangements are made. Consider these four steps:

1. Partitioning. It is possible to partition the road trip into smaller tasks, such as 
planning the route, booking accommodation, and researching places to visit. This 
allows for better organization and ensures that all necessary tasks are completed.

 Applying that to concurrency, we identify portions of work that can be performed 
concurrently. We decompose the problem into many tasks. This decomposition is 
achieved using data or task decomposition approaches (Chapter 7). Practical 
problems, such as the number of processors in the target computer, are ignored, 
and attention is focused on recognizing opportunities for independent execution.

1 Ian Foster, “Designing and Building Parallel Programs,” https://www.mcs.anl.gov/~itf/dbpp.
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2. Communication. When preparing for the road trip, you need to communicate 
with everyone involved to obtain the necessary data to execute tasks. You can 
create a group chat or email thread to discuss everyone’s preferences for the route, 
accommodations, and places to visit.

 Likewise, we organize the communications necessary to obtain the data needed to 
execute a task. The communication required to coordinate task execution is 
determined, and appropriate communication structures and algorithms are defined. 

3. Agglomeration. Agglomeration refers to establishing responsibility areas by 
dividing tasks and responsibilities into specific domains. Tasks are grouped based 
on similarity or relatedness, such as booking accommodations and researching 
places to visit. This allows for easier communication and coordination between 
team members and simplifies the planning process, as each person is responsible 
for a specific area.

 The tasks and communication structures defined in the first two stages of our 
design are evaluated with respect to performance requirements and implementation 
costs. It may involve grouping tasks into larger tasks to reduce communication or 
simplify implementation while maintaining flexibility if possible. 

4. Mapping. Finally, you need to assign tasks to the members of your road trip. For 
example, one person can be assigned to navigate and drive the car, while someone 
else can be responsible for booking accommodations and admission tickets. The 
goal is to minimize overall execution time and ensure that everyone has a role in 
making the road trip successful.

 When we assign tasks to physical processors, usually our goal is to minimize 
overall execution time. Load-balancing or task-scheduling techniques can be used 
to improve the quality of the mapping. Each task is assigned to a processor in a 
manner that attempts to satisfy the competing goals of maximizing processor 
utilization and minimizing communication costs. Mapping can be specified 
statically or determined at runtime by load-balancing algorithms.

Foster’s methodology
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NOTE A common mistake in designing concurrent systems is choosing the 
specific mechanisms for concurrency too early in the design process. Each 
mechanism has advantages and disadvantages, and the best mechanism for a 
particular use case is often determined by subtle compromises and 
concessions. The earlier a mechanism is chosen, the less information we have 
on which to base a choice.

Thus, machine-independent aspects of design methodology, such as task independence, 
are considered early on, and machine-specific aspects of the design are deferred until the 
end of the design process. In the first two stages, we focus on concurrency and scalability 
and seek to find algorithms with these qualities. In the third and fourth stages, the focus 
shifts to efficiency and performance. Implementing a concurrent program is the final 
step to ensure effective implementation of the intended algorithm, perhaps with machine- 
or algorithm-specific features in mind. In the rest of this chapter, we dive deep into these 
steps with examples to illustrate their application.

Matrix multiplication
Consider using Foster’s methodology on the example of matrix multiplication. Each 
matrix is represented as a two-dimensional array of arrays. Two matrixes can be multi-
plied if the number of columns in the first matrix, A, equals the number of rows in the 
second matrix, B. 

The product of A by B, which we call matrix C, will have dimensions based on the 
number of rows in A and the number of columns in B. Each element in matrix C is the 
product of the corresponding row in A and the column in B. 

So, for example, the element c2,3 is the product of the second row from matrix A and the 
first column from B. Written as a formula, c2,3 = a2,1 × b1,3 + a2,2 × b2,3. 
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To give you something to compare this to, let’s first use as an example the sequential 
algorithm:

# Chapter 13/matmul/matmul_sequential.py

import random

from typing import List

Row = List[int]

Matrix = List[Row]

def matrix_multiply(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:

    num_rows_a = len(matrix_a)

    num_cols_a = len(matrix_a[0])

    num_rows_b = len(matrix_b)

    num_cols_b = len(matrix_b[0])

    if num_cols_a != num_rows_b:    

        raise ArithmeticError( 

            f”Invalid dimensions; Cannot multiply “ 

            f”{num_rows_a}x{num_cols_a}*{num_rows_b}x{num_cols_b}” 

        ) 

    solution_matrix = [[0] * num_cols_b for _ in range(num_rows_a)] 

    for i in range(num_rows_a): 

        for j in range(num_cols_b): 

            for k in range(num_cols_a):  

For each column 
in matrix A ...

                solution_matrix[i][j] += matrix_a[i][k] * matrix_b[k][j]

    return solution_matrix

if __name__ == “__main__”:

    cols = 3

    rows = 2

Creates a new matrix filled with 
zeros, with the number of rows 

from matrix A and the number of 
columns from matrix BFor each 

row in 
matrix A ...

For each 
column 
in matrix 
B ...
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    A = [[random.randint(0, 10) for i in range(cols)] 

         for j in range(rows)]  

    print(f”matrix A: {A}”) 

    B = [[random.randint(0, 10) for i in range(rows)] 

         for j in range(cols)] 

    print(f»matrix B: {B}»)

    C = matrix_multiply(A, B)

    print(f”matrix C: {C}”)

Here, we implement a sequential version of matrix multiplication that takes two matrixes 
A and B and produces the result of the multiplication, matrix C. The function uses a set 
of nested for loops that iterates over rows in A and columns in B. The third for loop 
sums the products of the elements from row A and column B. In this way, the program 
fills the result matrix C with values. The goal is to design and build a concurrent pro-
gram that calculates the product of two matrixes, a common mathematical problem that 
can greatly benefit from concurrency.

Partitioning

The first step of Foster’s methodology, partitioning, is designed to identify opportunities 
for concurrency. Consequently, the focus is on identifying a large number of small tasks 
to obtain a fine-grained decomposition of the problem (Chapter 7). Just as fine sand is 
easier to pile than bricks, so fine-grained decomposition provides the greatest flexibility 
in terms of potential concurrent algorithms.

... generates a random matrix
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The goal

The goal of partitioning is to discover tasks that are as granular as possible. Partitioning 
is the only way to do this; the other steps usually reduce the amount of concurrency, so 
the goal of this step is to find all of it. At this initial stage, we are not concerned with 
practical problems such as the number of processor cores and the type of target machine, 
and our attention is focused on recognizing opportunities for parallel execution.

NOTE The partitioning step must produce at least an order of magnitude 
more tasks than the processors in the target machine. Otherwise, we will have 
fewer options in the later stages of the design. 

Data vs. task decomposition

When we implement a concurrent algorithm, we assume that it will be executed by mul-
tiple processing units. To do this, we need to isolate sets of operations in the algorithm 
that can be executed independently; that is, we decompose it. Two types of decomposition 
exist: data decomposition and task decomposition (Chapter 7).

If the algorithm is used to process large amounts of data, we can try to divide the data 
into parts, each of which allows independent processing by a separate processing unit. 
This is data decomposition. Another approach involves dividing calculations based on 
their functionality. This is task decomposition. 

NOTE Decomposition is not always possible. Some algorithms do not allow 
the participation of several executors in their implementation. To speed up 
those algorithms, there is vertical scaling, but it has physical limitations 
(Chapter 1).

Remember that data and task decomposition are complementary ways of approaching a 
problem, and it’s natural to combine the two. Developers usually start with data decom-
position because it is the basis for many concurrent algorithms. But sometimes, task 
decomposition can provide a different perspective on problems. Task decomposition 
may reveal problems or opportunities for better optimization that an inexperienced pro-
grammer may miss by looking at just the data.

Example

Let’s return to our matrix multiplication example. We have a program in front of us, and 
we can start thinking about how to decompose it and where the dependencies are. What 
parts of the program can we run independently?

As is clear from the definition of matrix multiplication, all elements of matrix C may 
be computed independently. As a result, a possible approach for partitioning matrix 
multiplication is to define the basic computational subtask as the problem of computing 
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a single element of result matrix C. In that case, the total number of subtasks appears 
equal to n × m (based on the number of elements of matrix C). 

The concurrency level achieved using this approach may seem excessive—the number 
of subtasks may greatly exceed the number of available processor cores. But that is fine 
at this stage; we have a follow-up stage (agglomeration) where we aggregate the compu-
tations for our specific needs.

Communication

The next step in our design process is to establish communication, which involves figur-
ing out how to coordinate execution and set up a communication channel between tasks.

The goal

When all computations are a single sequential program, all data is available to all parts of 
the program. When a computation is divided into independent tasks that may run in sep-
arate processors or even in separate processor cores, some of the data a task needs may 
reside in its local memory and some in the memory of other tasks. In either case, these 
tasks need to exchange data with each other. Organizing this communication efficiently 
can be a challenge. Even simple decomposition can have complex communication struc-
tures. We want to minimize this overhead in our program, so it is important to define it.

NOTE As we said before, the best way to implement concurrency is to 
reduce communication and interdependencies between concurrent tasks. If 
each task works with its own dataset, it does not need to protect that data with 
locks. Even when two tasks share a dataset, we might consider splitting that 
dataset or giving each task its own copy. Of course, there are also costs 
associated with copying datasets, so we need to weigh those costs against the 
costs of synchronization before making a decision.

Example

Our concurrent algorithm at this stage is formulated as a set of tasks where each task 
calculates the value of an element of matrix C and expects a single row of matrix A and 
a single column of matrix B to be the input. 

In the agglomeration stage, we may consider combining the tasks to calculate not just 
one element of matrix C but the whole matrix row. In that case, a row of matrix A and all 
the columns of matrix B must be available for carrying out the necessary computations of 
the tasks. The simple solution is duplicating matrix B in all the tasks, but doing so may be 
unacceptable because of the sizeable memory expense of data storage. Another option is to 
use shared memory all the time, as the algorithm only uses matrixes A and B for read 
access, and elements of matrix C will be executed independently. In the later stages, we 
consider those options and think about the best solution for the use case at hand.
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Agglomeration

In the first two stages of the design process, computation is broken down to maximize con-
currency, and communication between tasks is introduced so that tasks have the data they 
need. The resulting algorithm is still an abstraction since it is not designed to run on any 
particular computer. The design obtained at this point probably doesn’t map well onto a real 
machine. If the number of tasks greatly exceeds the number of processors, the overhead will 
be strongly affected by how the tasks are assigned to the processors. This third step, agglom-
eration, revisits the decisions made in the partitioning and communication steps. 

The goal

The goal of this step is to improve performance and simplify development efforts, often 
by combining groups of tasks into larger tasks. The goals are often contradictory, and 
compromises have to be made.

In some cases, combining tasks with very different execution times can lead to perfor-
mance problems. For example, if a long-running task is combined with many short- 
running tasks, the short-running tasks may have to wait a long time for the long-running 
task to complete. On the other hand, separating tasks may simplify the design but result 
in lower performance. In such cases, a compromise may be necessary between the bene-
fits of simplicity and performance.

Let’s consider the snow-shoveling example from Chapter 7. Shoveling snow is harder 
and slower than scattering salt, so in coming up with a plan of attack, the worker with 
the salt bag may want to give the shoveler a head start and then start scattering salt. 
When they catch up to the shoveler, they can switch jobs, giving the shoveler a breather 
as they take the bag of salt and wait for the other worker to get a head start. They con-
tinue this pattern until all the jobs are done. This reduces communication between the 
workers and improves overall performance.

Reducing communication overhead is one way to improve performance. When two 
tasks exchanging data with each other are combined into one task, the data communica-
tion becomes part of one task, and that communication and overhead are removed. This 
is called increasing locality.
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Another way to reduce communication overhead is 
to group tasks that send data, and group tasks that 
receive data, where possible. In other words, sup-
pose task T1 sends data to task T3, and T2 sends to 
T4. If we merge T1 and T2 into one task T1, and we 
merge T3 and T4 into one task T3, the communica-
tion overhead decreases. The transmission time is 
not reduced, but we halve the total waiting time. 
Remember that when a task is waiting for data, it 
cannot compute, so the time spent waiting is lost.

Example

When we partitioned our matrixes earlier, we used a fine-grained approach. Each ele-
ment of the resulting matrix needs to be calculated. We divided the multiplication task 
into separate tasks according to the number of elements in the resulting matrix, one 
for each matrix element. In evaluating the communication, we determined that each 
subtask should have a row of matrix A and a column of matrix B. For a single instruc-
tion, multiple data (SIMD) computer (Chapter 3), it may be great if we can share A and 
B matrixes between threads; and on this type of machine, the solution will work better 
if we use a large number of threads. A natural choice is for each thread to compute one 
element of the result.
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But if we have ordinary hardware—a multiple instruction, multiple data (MIMD) com-
puter (Chapter 3)—the number of tasks is greater than the number of processors (p). If 
the number of elements in the matrix n × m is greater than p, the tasks can be aggregated 
by combining several neighboring rows and columns of multiplied matrixes into one 
subtask. In this case, the original matrix A is split into a number of horizontal strips, and 
matrix B is represented as a set of vertical strips. The band size (d) ideally should be equal 
to d = n × m/p (provided n is a multiple of p) because this ensures an equal distribution 
of computational load among processors. This reduces the communication between 
these tasks since everything else is handled locally within the task. 

NOTE Too much agglomeration is not good either. It’s easy to make a short-
sighted decision that could limit the program’s scalability. A well-designed 
parallel program must adapt to changes in the number of processors. Try not 
to put unnecessarily strict limits on the number of tasks in the program. You 
should design your system to take advantage of more cores as they appear. 
Make the number of cores an input variable, and design based on it.

Mapping

The last step in Foster’s methodology is assigning each task to a processing unit. Of 
course, this problem does not arise on single-processor computers or shared-memory 
computers whose OSs provide automatic task scheduling. If we are just writing programs 
to run on a desktop computer, as in the examples we’ve used throughout the book, sched-
uling isn’t something we need to consider. Scheduling becomes a factor if we’re using a 
distributed system or specialized hardware with many processors for large-scale tasks. 
We touch on that aspect in the next example.

The goal

The goal of mapping the algorithm is twofold: to minimize the overall program execution 
time and optimize resource utilization. There are two basic strategies for achieving that: 
place tasks that can run in parallel on different processors to increase overall concurrency, 
or focus on placing tasks that often interact with each other on the same processor to 
increase locality by keeping them close to each other. In some situations, we can use both 
approaches; but they often conflict, which means we have to make design tradeoffs. 
Designing a good mapping algorithm depends heavily on the program’s structure and the 
hardware on which it runs, which is, unfortunately, beyond the scope of this book.

Example

In our example of matrix multiplication, we delegate the mapping and scheduling of 
tasks to the OS, so it’s not our concern.
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Implementation

There are a few steps left in the design process. First, we need to do some simple perfor-
mance analyses to choose between alternative algorithms and check that our design 
meets our requirements and performance goals. We also need to think hard about the 
cost of implementing our algorithm, the reusability of existing code when we implement 
it, and how it all fits into the larger systems of which the algorithm may become a part. 
These questions are specific to the use case at hand, and real-world systems will likely 
bring more complications that need to be considered on a case-by-case basis. Such con-
siderations are also beyond the scope of this book.

The example implementation of the concurrent matrix multiplication is as follows:

# Chapter 13/matmul/matmul_concurrent.py

from typing import List

import random

from multiprocessing import Pool

Row = List[int]

Column = List[int]

Matrix = List[Row]

def matrix_multiply(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:

    num_rows_a = len(matrix_a)

    num_cols_a = len(matrix_a[0])

    num_rows_b = len(matrix_b)

    num_cols_b = len(matrix_b[0])

    if num_cols_a != num_rows_b:

        raise ArithmeticError(

            f”Invalid dimensions; Cannot multiply “

            f”{num_rows_a}x{num_cols_a}*{num_rows_b}x{num_cols_b}”

        )

    pool = Pool() 

    results = pool.map( 

        process_row, 

        [(matrix_a, matrix_b, i) for i in range(num_rows_a)]) 

    pool.close()

    pool.join() 

    return results

Creates a new process pool to 
calculate the matrix concurrently

Applies a function to each row in the 
matrix, passing in matrixes A and B 

and the current row index i, and 
returns a list of results
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def process_row(args: tuple) -> Column: 

    matrix_a, matrix_b, row_idx = args

    num_cols_a = len(matrix_a[0]) 

    num_cols_b = len(matrix_b[0]) 

    result_col = [0] * num_cols_b

    for j in range(num_cols_b): 

        for k in range(num_cols_a): 

            result_col[j] += matrix_a[row_idx][k] * matrix_b[k][j] 

    return result_col

if __name__ == “__main__”:

    cols = 4

    rows = 2

    A = [[random.randint(0, 10) for i in range(cols)] for j in range(rows)]

    print(f»matrix A: {A}»)

    B = [[random.randint(0, 10) for i in range(rows)] for j in range(cols)]

    print(f»matrix B: {B}»)

    C = matrix_multiply(A, B)

    print(f”matrix C: {C}”)

This program defines a function matrix_multiply that takes in two matrixes and cal-
culates their product concurrently. It uses a process pool to break down the calculation into 
smaller tasks of calculating individual columns of the solution matrix concurrently. The 
program collects the results of these tasks and stores them in the result matrix.

This is cool, but many frameworks and libraries already solve those math problems. 
Let’s tackle another problem that’s a bit more realistic; some big data engineering courses 
consider it a “Hello world” application, but we do it purely in Python.

Distributed word count
The distributed word count problem is a classic example of a big data problem that can 
be solved using distributed computing. The objective is to count the occurrences of each 
word in a large dataset, typically a text file or a collection of text files. While seemingly 
simple, this task can become time consuming and resource intensive when dealing with 
massive datasets.

Multiplies a row of matrix A by each column of 
matrix B and returns the resulting column
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To illustrate the significance of this challenge, consider the infamous incident that 
occurred during the reprint of the King James Bible in 1631. The printing process 
involved placing each letter (a total of 3,116,480) carefully in the lower platen of the print-
ing press to create all 783,137 words in the Bible. However, a mistake was made, and the 
word not was omitted from a well-known verse. The resulting work became known as 
“The Wicked Bible” because, in the Ten Commandments, it said, “Thou shall commit 
adultery.” If the printers had a way to automate the counting of all the words and letters 
that were supposed to be in the final product, the crucial mistake might have been 
avoided. This incident underscores the importance of accurate and efficient word count 
processes, especially when dealing with large datasets.

As a starting point, let’s create a simple sequential program:

# Chapter 13/wordcount/wordcount_seq.py

import re

import os

import glob

import typing as T

Occurrences = T.Dict[str, int]

ENCODING = “ISO-8859-1”

def wordcount(filenames: T.List[str]) -> Occurrences:

    word_counts = {}
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    for filename in filenames: 

        print(f”Calculating {filename}”)

        with open(filename, “r”, encoding=ENCODING) as file:

            for line in file: 

                words = re.split(“\W+”, line) 

                for word in words: 

                    word = word.lower() 

                    if word != “”: 

                        word_counts[word] = 1 + word_counts.get(word, 0)

    return word_counts

if __name__ == “__main__”:

    data = list(

        glob.glob(f”{os.path.abspath(os.getcwd())}/input_files/*.txt”))

    result = wordcount(data)

    print(result)

For each file, our application reads the text, divides it into words (ignoring punctuation 
and capitalization), and adds it to the total count of each word in the dictionary. From 
each word, it creates a key-value pair (word, 1). That is, the word is treated as a key, and 
the associated value of 1 means we have seen that word once.

The goal is to design and build a concurrent program that calculates the number of 
occurrences of each word in each document, with gigabytes of files and a distributed 
computer cluster. Let’s run through the four stages again, this time applied to our new 
problem.

NOTE The word count problem has been used to demonstrate several 
generations of distributed data engines. It was introduced in MapReduce and 
then used in many others, including Pig, Hive, and Spark.

Partitioning

To create a solution that associates each word with its frequency in a dataset, we must 
tackle two main challenges: breaking down the text files into individual words and 
counting the number of occurrences of each word. The second task depends on complet-
ing the first, as we cannot begin counting word occurrences until the text has been 
divided into individual words. This situation is a prime example of task decomposition, 

For each filename ...

For each line in 
the current file ...

... splits the line into  
individual words using a 
regular expression pattern 
that matches only word 
characters (not punctuation)

... counts the word 
if it is not empty
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where we can break down the problem into smaller tasks based on their functionality. In 
this approach, the focus is primarily on the type of task to be performed rather than on 
the data needed for the computation.

This also looks like a great example for applying 
the map/reduce pattern we learned about in 
Chapter 7. We can express the computation in two 
steps or phases: map and reduce. 

Here, the map phase plays a role in reading the 
text files and splitting them into word pairs. We can 
achieve maximum concurrency (what we are look-
ing for in this step) in the map phase by splitting the 
input data into multiple chunks. For M workers, we 
want to have M chunks so that each worker has 
something to work on. The number of workers 
depends mainly on the number of machines at our 
disposal.

No matter how complex the data you are trying to process, the map phase produces 
events consisting of a key and a value. The key is important in the reduce phase.

The reduce task takes the output from the map task, a list of key-value pairs, and com-
bines all the values for each unique key. For example, if the map task’s output is [(“the”, 
1), (“take”, 1), (“the”, 1)], the reduce task combines the values for the key 
“the” to produce the output [(“the”, 2)]. This is known as reducing or aggregating 
the data. The reduce output is a list of unique keys and their associated total count.
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We can build the algorithm differently here by creating multiple reduce tasks and assign-
ing each of them a list of words to handle. It’s up to the next steps to decide on the best 
implementation.

There is no predicting which worker will get which file to read. It can be any file in any 
order. This gives our program ample horizontal scaling capability. Just add more worker 
nodes, and we can read more files simultaneously. If we had infinite hardware, we could 
read each file in parallel, reducing data read time to the length of the longest text.

Communication

All worker nodes in our cluster are assigned chunks of data to read. In our word count 
example, imagine that we are reading an enormous number of text files, such as a com-
plete collection of books, where each book is a separate file.

To store and distribute this text data, we can use network attached storage (NAS). NAS 
can be described as a combination of a large storage drive and a special hardware plat-
form that allows us to connect this storage drive to the local computer network. This 
way, we do not need to worry about complex communication protocols, and each node 
in the cluster can access files as if they were on a local disk.
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The map and reduce tasks are expected to run on arbitrary machines of our cluster 
without any common context. They can run on the same machine or completely differ-
ent machines. This means all the data that the map phase outputs must be transferred to 
the reduce phase and possibly written to disk if it’s too big to fit in memory (which is 
often the case), and we can have several options for that situation. The first is interpro-
cess communication (IPC) with message passing (Chapter 5). We can also use shared 
data to store intermediate data map tasks, and reduce tasks can use this shared NAS 
volume. That is what we do.

Another factor to consider is whether communications are synchronous or asynchro-
nous. In synchronous communications, all tasks must wait until the entire communica-
tion process is complete before they can continue to do other work. This can potentially 
cause tasks to spend a lot of time waiting for data exchange instead of doing useful work.

In asynchronous communications, on the other hand, once a task sends an asynchro-
nous message, it can immediately do other work regardless of when the receiving task 
receives the message. Also consider the amount of processing overhead that a particular 
communication strategy entails. After all, CPU cycles spent sending and receiving data 
are cycles not spent processing data.

For our problem, it is beneficial to use asynchronous communication. We have 
long-running tasks that do not require blocking execution, and we have a lot of commu-
nication between them.
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Agglomeration

Currently, each of our map tasks yields word pairs (word, 1). A very easy way to speed 
things up is to pre-aggregate those pairs locally on each map task before the map phase 
ends and the reduce phase begins. This step, known as combine, is similar to reduce. It 
takes an arbitrary list of intermediate key-value pairs grouped by key, performs a value 
aggregation operation (if possible), and outputs fewer key-value pairs. In other words, it 
can opportunistically pre-aggregate some of the intermediate values to reduce the com-
munication overhead between map tasks and reduce tasks.

Also, going back to our previous thoughts about the number of reduce tasks to sim-
plify the algorithm, we use only one reduce task: we agglomerate all the reduce tasks into 
one big reduce task. This won’t be as much data to compute since we just added the com-
bine task, so that should be fine.

Mapping

After the agglomeration phase, we are in the state of a composer who has prepared every-
thing to perform a symphony. But the beautiful sound of the orchestra is only possible 
with a conductor who coordinates the individual musicians and brings the conductor’s 
own style to the performance. Yes, we are talking about scheduling our tasks on the 
actual processing resources that we have.

The most important (and complex) aspect of the task-scheduling algorithm is the strat-
egy used to distribute tasks among workers. Typically, the strategy chosen is a compro-
mise between the conflicting demands of independent work (to reduce communication 
costs) and global knowledge of the state of computation (to improve the load balance).

We implement the simplest idea: a central scheduler. The central scheduler sends 
tasks to workers, tracks progress, and returns results. It selects idle workers and assigns 
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them either a map task or a reduce task. When all workers have finished their map task, 
the scheduler notifies them to start the reduce task (in our case, it is only one worker). 

Each worker repeatedly requests and completes a task from the scheduler and returns 
the results of the work to the scheduler. The efficiency of this strategy depends on the 
number of workers and the relative costs of receiving and completing the tasks. We use a 
somewhat complex strategy of dynamic task allocation because we do not know the 
number of files and their sizes in advance. Therefore, we cannot guarantee optimal task 
allocation before the job starts.

Implementation

The following diagram provides an overview of the entire program in action. The server 
initiates the execution and creates a central scheduler. Each map worker is assigned a file 
for processing. If there are more files than workers, a worker is assigned another file once 
it has finished processing. Before completing the map task, combine tasks are triggered 
to aggregate the output of the map tasks, thereby reducing communication overhead. 
Once the map phase is finished, the scheduler commences the reduce phase, in which all 
the map outputs are combined into a single output.

Our main server functionality is as follows:

# Chapter 13/wordcount/server.py

import os

import glob

import asyncio
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from scheduler import Scheduler

from protocol import Protocol, HOST, PORT, FileWithId

class Server(Protocol):

    def __init__(self, scheduler: Scheduler) -> None:

        super().__init__()

        self.scheduler = scheduler

    def connection_made(self, transport: asyncio.Transport) -> None: 

        peername = transport.get_extra_info(“peername”) 

        print(f”New worker connection from {peername}”) 

        self.transport = transport

        self.start_new_task() 

    def start_new_task(self) -> None: 

        command, data = self.scheduler.get_next_task() 

        self.send_command(command=command, data=data) 

    def process_command(self, command: bytes,

                        data: FileWithId = None) -> None:

        if command == b”mapdone”:

            self.scheduler.map_done(data)

            self.start_new_task()

        elif command == b”reducedone”:

            self.scheduler.reduce_done()

            self.start_new_task()

        else:

            print(f”Unknown command received: {command}”)

def main():

    event_loop = asyncio.get_event_loop() 

Gets the event loop

    current_path = os.path.abspath(os.getcwd())

    file_locations = list( 

        glob.glob(f”{current_path}/input_files/*.txt”)) 

    scheduler = Scheduler(file_locations) 

    server = event_loop.create_server( 

        lambda: Server(scheduler), HOST, PORT) 

Defines the method 
to be called when a 

new worker connects 
to the server

Gets the next  
task from the 
scheduler and 

sends a command 
and data to the 

worker

Gets a list of the files 
in the input directory

Creates a Scheduler 
instance with the list of 
filenames in the data

Creates 
a server
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    server = event_loop.run_until_complete(server) 

    print(f”Serving on {server.sockets[0].getsockname()}”)

    try: 

        event_loop.run_forever() 

    finally: 

        server.close() 

        event_loop.run_until_complete(server.wait_closed()) 

        event_loop.close()

 

if __name__ == “__main__”:

    main()

This is Server—our main execution process that is responsible for communication 
with every worker process. It also calls Scheduler to get the next task for each worker 
and coordinate the map and reduce phases.

Our worker functionality is as follows:

# Chapter 13/wordcount/worker.py

import re

import os

import json

import asyncio

import typing as T

from uuid import uuid4

from protocol import Protocol, HOST, PORT, FileWithId, \

    Occurrences

ENCODING = “ISO-8859-1”

RESULT_FILENAME = “result.json”

class Worker(Protocol):

    def connection_lost(self, exc): 

        print(“The server closed the connection”) 

        asyncio.get_running_loop().stop() 

    def process_command(self, command: bytes, data: T.Any) -> None:

        if command == b”map”:

Runs the 
server

Tries to run the event loop forever. In the finally 
clause, closes the server, waits for it to close, 

and then closes the event loop.

Runs when the 
connection to 
the server is lost
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            self.handle_map_request(data)

        elif command == b”reduce”:

            self.handle_reduce_request(data)

        elif command == b”disconnect”:

            self.connection_lost(None)

        else:

            print(f”Unknown command received: {command}”)

    def mapfn(self, filename: str) -> T.Dict[str, T.List[int]]: 

        print(f”Running map for {filename}”) 

        word_counts: T.Dict[str, T.List[int]] = {} 

        with open(filename, “r”, encoding=ENCODING) as f: 

            for line in f: 

                words = re.split(“\W+”, line) 

                for word in words: 

                    word = word.lower() 

                    if word != “”: 

                        if word not in word_counts: 

                            word_counts[word] = [] 

                        word_counts[word].append(1) 

        return word_counts

    def combinefn(self, results: T.Dict[str, T.List[int]]) -> Occurrences:

        combined_results: Occurrences = {} 

        for key in results.keys(): 

            combined_results[key] = sum(results[key]) 

        return combined_results

    def reducefn(self, map_files: T.Dict[str, str]) -> Occurrences: 

        reduced_result: Occurrences = {} 

        for filename in map_files.values(): 

            with open(filename, “r”) as f: 

                print(f”Running reduce for {filename}”) 

                d = json.load(f) 

                for k, v in d.items(): 

                    reduced_result[k] = v + reduced_result.get(k, 0) 

        return reduced_result

Map function. Takes 
a filename as input, 
opens the file, reads 
each line, splits it into 
words, and returns 
each word with a 
count of 1.

Combiner function. Takes a 
dictionary of results, sums 
the counts for each word, 

and returns a dictionary of 
combined results.

Reduce function. Takes a dictionary of filenames (where 
each key is an ID and each value is a filename), reads 

each file, and combines the results into a single dictionary.
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    def handle_map_request(self, map_file: FileWithId) -> None: 

        print(f”Mapping {map_file}”)

        temp_results = self.mapfn(map_file[1])

        results = self.combinefn(temp_results) 

        temp_file = self.save_map_results(results) 

        self.send_command( 

            command=b”mapdone”, data=(map_file[0], temp_file)) 

    def save_map_results(self, results: Occurrences) -> str: 

        temp_dir = self.get_temp_dir() 

        temp_file = os.path.join(temp_dir, f”{uuid4()}.json”) 

        print(f”Saving to {temp_file}”) 

        with open(temp_file, “w”) as f: 

            d = json.dumps(results) 

            f.write(d) 

        print(f”Saved to {temp_file}”) 

        return temp_file

    def handle_reduce_request(self, data: T.Dict[str, str]) -> None:

        results = self.reducefn(data) 

        with open(RESULT_FILENAME, “w”) as f: 

            d = json.dumps(results)

            f.write(d)

        self.send_command(command=b”reducedone”, 

                          data=(“0”, RESULT_FILENAME)) 

def main():

    event_loop = asyncio.get_event_loop()

    coro = event_loop.create_connection(Worker, HOST, PORT)

    event_loop.run_until_complete(coro)

    event_loop.run_forever()

    event_loop.close()

if __name__ == “__main__”:

    main()

Workers during the map phase invoke the mapfn function to parse the data and then 
invoke the combinefn function to merge the results and write intermediate (key, value) 

Runs a map 
function

Combines the intermediate 
results of the map function

Saves the combined results to a 
temporary file and returns the file path

Sends a message to the server indicating 
that the map stage is complete

Calls the reducefn 
function with the 
intermediate map 
files results

Saves the reduced 
results to a JSON file

Sends a message to the server indicating 
that the reduce stage is complete
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results. During the reduce phase, a worker gets the intermediate data, calls the reducefn 
function once for each unique key, and gives it a list of all values generated for that key. 
It then writes its final output to a single file that the user’s program can access once the 
program has completed.

Here is our scheduler implementation:

# Chapter 13/wordcount/scheduler.py

import asyncio

from enum import Enum

import typing as T

from protocol import FileWithId

class State(Enum):

    START = 0

    MAPPING = 1

    REDUCING = 2

    FINISHED = 3

class Scheduler:

    def __init__(self, file_locations: T.List[str]) -> None:

        self.state = State.START

        self.data_len = len(file_locations)

        self.file_locations: T.Iterator = iter(enumerate(file_locations))

        self.working_maps: T.Dict[str, str] = {}

        self.map_results: T.Dict[str, str] = {}

    def get_next_task(self) -> T.Tuple[bytes, T.Any]:

        if self.state == State.START:

            print(“STARTED”)

            self.state = State.MAPPING

        if self.state == State.MAPPING:

            try: 

                map_item = next(self.file_locations) 

                self.working_maps[map_item[0]] = map_item[1] 

                return b”map”, map_item 

            except StopIteration: 

                if len(self.working_maps) > 0: 

                    return b”disconnect”, None 

                self.state = State.REDUCING 

Gets the next task
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        if self.state == State.REDUCING:

            return b”reduce”, self.map_results

        if self.state == State.FINISHED:

            print(“FINISHED.”)

            asyncio.get_running_loop().stop()

            return b”disconnect”, None

    def map_done(self, data: FileWithId) -> None: 

        if not data[0] in self.working_maps: 

            return 

        self.map_results[data[0]] = data[1] 

        del self.working_maps[data[0]] 

        print(f”MAPPING {len(self.map_results)}/{self.data_len}”) 

    def reduce_done(self) -> None: 

        print(“REDUCING 1/1”) 

        self.state = State.FINISHED 

This is the central scheduler. In our implementation, it is divided into several states: 

• Start state—Where the scheduler initializes the necessary data structures. 

• Mapping state—Where the scheduler distributes all map tasks. Each task is a 
separate file, so when the server requests the next task, the scheduler simply 
returns the next unprocessed file. 

• Reducing state—Where the scheduler stops all but one workflow for a single 
reduce task. 

• Finished state—Where the scheduler stops the server and, therefore, the program.

NOTE For testing, I used books from Project Gutenberg (https://www.
gutenberg.org/help/mirroring.html), and the overall system was able to work 
quite fast with a couple of gigabytes of data.

Callback for when a file has 
finished being mapped

Callback for when all the 
files have been mapped 
and reduced

https://www.gutenberg.org/help/mirroring.html
https://www.gutenberg.org/help/mirroring.html
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Recap
• The first 12 chapters of this book laid out a puzzle called concurrency. This 

chapter connected all the pieces of knowledge we learned previously.

• Before starting to write a concurrent program, we first examine the problem to 
be solved and make sure the effort to create a concurrent program is justified by 
the task at hand. 

• The next steps are to be sure the problem can be divided into tasks and make 
communication and coordination of the tasks possible.

• In the third and fourth steps, the abstract algorithm becomes tangible and 
efficient when we consider the class of parallel computers on which it is to run. 
Is it a centralized multiprocessor or a multicomputer? What communication 
paths are supported? How should we combine tasks to efficiently distribute 
them across processors?
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Throughout this book, we’ve utilized a 
variety of abstract concepts to illustrate 
the intricacies of designing concurrent 
systems. From symphony orchestras to 
hospital waiting rooms, and from fast 
food processes to home maintenance, 
we’ve drawn comparisons to help you 
understand complex topics. While we 
acknowledge that this book has only 
scratched the surface of this vast field, 
even this nominal level of detail empha-
sizes multiple strategies for developing 
concurrent applications.

After reading these 13 chapters, you should have a solid foundation to go 
deeper into the field of concurrency. There is still a lot to discover there! 
Now, hit it! (♪♪♪ Start the music! ♪♪♪).

Epilogue
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